No Arabic abstract
We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Renyi entanglement entropy S_2, can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c. We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT with c=1. This can be accomplished with a very small hoping parameter J, in contrast to existing studies with density one where a much larger J is needed. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical O(2) model with a chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. S_2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8)ln(N_s), for N_s sites with open boundary conditions, provided that the large subleading corrections are taken into account.
The present Chapter discusses methods by which topological Bloch bands can be prepared in cold-atom setups. Focusing on the case of Chern bands for two-dimensional systems, we describe how topological properties can be triggered by driving atomic gases, either by dressing internal levels with light or through time-periodic modulations. We illustrate these methods with concrete examples, and we discuss recent experiments where geometrical and topological band properties have been identified.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su-Schrieffer-Heeger model, the Hofstadter-Harper model, the Haldane model and the Kane-Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.
We calculate Sorkins spacetime entanglement entropy of a Gaussian scalar field for complementary regions in the 2d cylinder spacetime and show that it has the Calabrese-Cardy form. We find that the cut-off dependent term is universal when we use a covariant UV cut-off. In addition, we show that the relative size-dependent term exhibits complementarity. Its coefficient is however not universal and depends on the choice of pure state. It asymptotes to the universal form within a natural class of pure states.
We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determine their amplitudes using the resolvent formalism. Experimentally, we observe transitions up to sixth order in the probe field using radiofrequency spectroscopy of Bose-Einstein condensates trapped in single- and multiple-radiofrequency-dressed potentials. We find excellent agreement between theory and experiment, including the prediction and verification of previously unobserved transitions, even in the single-radiofrequency case.
Using the transfer matrix method, we numerically compute the precise position of the mobility edge of atoms exposed to a laser speckle potential, and study its dependence vs. the disorder strength and correlation function. Our results deviate significantly from previous theoretical estimates using an approximate self-consistent approach of localization. In particular we find that the position of the mobility edge in blue-detuned speckles is much lower than in the red-detuned counterpart, pointing out the crucial role played by the asymmetric on-site distribution of speckle patterns.