Do you want to publish a course? Click here

IoT Sentinel: Automated Device-Type Identification for Security Enforcement in IoT

76   0   0.0 ( 0 )
 Added by Markus Miettinen
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead.



rate research

Read More

Internet-of-Things (IoT) devices are known to be the source of many security problems, and as such, they would greatly benefit from automated management. This requires robustly identifying devices so that appropriate network security policies can be applied. We address this challenge by exploring how to accurately identify IoT devices based on their network behavior, while leveraging approaches previously proposed by other researchers. We compare the accuracy of four different previously proposed machine learning models (tree-based and neural network-based) for identifying IoT devices. We use packet trace data collected over a period of six months from a large IoT test-bed. We show that, while all models achieve high accuracy when evaluated on the same dataset as they were trained on, their accuracy degrades over time, when evaluated on data collected outside the training set. We show that on average the models accuracy degrades after a couple of weeks by up to 40 percentage points (on average between 12 and 21 percentage points). We argue that, in order to keep the models accuracy at a high level, these need to be continuously updated.
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organizations network also increases the risk of attacks. In order to address this threat, organizations often implement security policies in which only the connection of white-listed IoT devices is permitted. To monitor adherence to such policies and protect their networks, organizations must be able to identify the IoT devices connected to their networks and, more specifically, to identify connected IoT devices that are not on the white-list (unknown devices). In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network. In contrast to previous work, our approach does not require that complex feature engineering be applied on the network traffic, since we represent the communication behavior of IoT devices using small images built from the IoT devices network traffic payloads. In our experiments, we trained a multiclass classifier on a publicly available dataset, successfully identifying 10 different IoT devices and the traffic of smartphones and computers, with over 99% accuracy. We also trained multiclass classifiers to detect unauthorized IoT devices connected to the network, achieving over 99% overall average detection accuracy.
54 - Thomas P. Dover 2021
How do healthcare organizations (from small Practices to large HDOs) evaluate adherence to the cybersecurity and privacy protection of Medical Internet of Things (MIoT) used in clinical settings? This paper suggests an approach for such evaluation using National Institute of Standards and Technology (NIST) guidance. Through application of NISTIR 8228 Expectations it is possible to quantitatively assess cybersecurity and privacy protection, and determine relative compliance with recommended standards. This approach allows organizations to evaluate the level of risk a MiOT device poses to IT systems and to determine whether or not to permit its use in healthcare/IT environments. This paper reviews the current state of IoT/MiOT cybersecurity and privacy protection using historical and current industry guidance & best-practices; recommendations by federal agencies; NIST publications; and federal law. It then presents similarities and differences between IOT/MiOT devices and traditional (or classic) Information Technology (IT) hardware, and cites several challenges IoT/MiOT pose to cybersecurity and privacy protection. Finally, a practical approach to evaluating cybersecurity and privacy protection is offered along with enhancements for validating assessment results. In so doing it will demonstrate general compliance with both NIST guidance and HIPAA/HITECH requirements.
The various types of communication technologies and mobility features in Internet of Things (IoT) on the one hand enable fruitful and attractive applications, but on the other hand facilitates malware propagation, thereby raising new challenges on handling IoT-empowered malware for cyber security. Comparing with the malware propagation control scheme in traditional wireless networks where nodes can be directly repaired and secured, in IoT, compromised end devices are difficult to be patched. Alternatively, blocking malware via patching intermediate nodes turns out to be a more feasible and practical solution. Specifically, patching intermediate nodes can effectively prevent the proliferation of malware propagation by securing infrastructure links and limiting malware propagation to local device-to-device dissemination. This article proposes a novel traffic-aware patching scheme to select important intermediate nodes to patch, which applies to the IoT system with limited patching resources and response time constraint. Experiments on real-world trace datasets in IoT networks are conducted to demonstrate the advantage of the proposed traffic-aware patching scheme in alleviating malware propagation.
Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not available. In this paper, we address the IL problem in NDI from a new perspective, firstly, we provide a new metric to measure the degree of topological maturity of DNN models from the degree of conflict of class-specific fingerprints. We discover that an important cause for performance degradation in IL enabled NDI is owing to the conflict of devices fingerprints. Second, we also show that the conventional IL schemes can lead to low topological maturity of DNN models in NDI systems. Thirdly, we propose a new Channel Separation Enabled Incremental Learning (CSIL) scheme without using historical data, in which our strategy can automatically separate devices fingerprints in different learning stages and avoid potential conflict. Finally, We evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services. Data and code available at IEEE Dataport (DOI: 10.21227/1bxc-ke87) and url{https://github.com/pcwhy/CSIL}}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا