Do you want to publish a course? Click here

Inclusive three- and four-jet production in multi-Regge kinematics at the LHC

83   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A study of differential cross sections for the production of three and four jets in multi-Regge kinematics is presented. The main focus lies on the azimuthal angle dependences in events with two forward/backward jets are tagged in the final state. Furthermore, the tagging of one or two extra jets in more central regions of the detector with a relative separation in rapidity from each other is requested. It is found that the dependence of the cross sections on the transverse momenta and the rapidities of the central jet(s) can offer new means of studying the onset of BFKL dynamics.



rate research

Read More

A study of differential cross sections for the production of four jets in multi-Regge kinematics is presented, the main focus lying on azimuthal angle dependences. The theoretical setup consists in the jet production from a single BFKL ladder with a convolution of three BFKL Green functions, where two forward/backward jets are always tagged in the final state. Furthermore, the tagging of two further jets in more central regions of the detectors with a relative separation in rapidity from each other is requested. It is found, as result, that the dependence on the transverse momenta and the rapidities of the two central jets can be considered as a distinct signal of the onset of BFKL dynamics.
We consider b-jet hadroproduction in the quasi-multi-Regge-kinematics approach based on the hypothesis of gluon and quark Reggeization in t-channel exchanges at high energies. The preliminary data on inclusive b-jet and b anti-b-dijet production taken by the CDF Collaboration at the Fermilab Tevatron are well described without adjusting parameters. We find the main contribution to inclusive b-jet production to be the scattering of a Reggeized gluon and a Reggeized b-quark to a b quark, which is described by the effective Reggeon-Reggeon-quark vertex. The main contribution to b anti-b-pair production arises from the scattering of two Reggeized gluons to a b anti-b pair, which is described by the effective Reggeon-Reggeon-quark-quark vertex. Our anaysis is based on the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions using as input the Martin-Roberts-Stirling-Thorne collinear parton distribution functions of the proton.
We discuss briefly a recent study of new observables in LHC inclusive events with three tagged jets. One jet is in the forward direction, the second is in the backward direction and well-separated in rapidity from the first, whereas, the third tagged jet is to be found in more central regions of the detector. Taking into consideration that non-tagged mini-jet emissions are allowed and that they may be accounted for by the BFKL gluon Green function, we project the cross sections on azimuthal-angle components and define suitable ratios based on these projections which can provide several distinct tests of the BFKL dynamics.
We demonstrate that in the back-to-back kinematics the production of four jets in the collision of two partons is suppressed in the leading log approximation of pQCD, compared to the hard processes involving the collision of four partons. We derive the basic equation for four-jet production in QCD in terms of the convolution of generalized two-parton distributions of colliding hadrons in the momentum space representation. Our derivation leads to geometrical approach in the impact parameter space close to that suggested within the parton model and used before to describe the four-jet production. We develop the independent parton approximation to the light-cone wave function of the proton. Comparison with the CDF and D0 data shows that the independent parton approximation to the light-cone wave function of the proton is insufficient to explain the data. We argue that the data indicate the presence of significant multiparton correlations in the light-cone wave functions of colliding protons.
159 - V.A. Saleev 2009
We study the production of prompt diphotons in the central region of rapidity within the framework of the quasi-multi-Regge-kinematics approach applying the hypothesis of quark and gluon Reggeization. We describe accurately and without free parameters the experimental data which were obtained by the CDF Collaboration at the Tevatron Collider. It is shown that the main contribution to studied process is given by the direct fusion of two Reggeized gluons into a photon pair, which is described by the effective Reggeon-Reggeon to particle-particle vertex. The contribution from the annihilation of Reggeized quark-antiquark pair into a diphoton is also considered. At the stage of numerical calculations we use the Kimber-Martin-Ryskin prescription for unintegrated quark and gluon distribution functions, with the Martin-Roberts-Stirling-Thorne collinear parton densities for a proton as input.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا