Sizes and Kinematics of Extended Narrow-Line Regions in Luminous Obscured AGN Selected by Broadband Images


Abstract in English

To study the impact of active galactic nuclei (AGN) feedback on the galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby type 2 AGN (L_bol~10^{45.0-46.5} erg/s, z~0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [OIII]{lambda}5007 and WISE mid-IR luminosities and extended emission in the SDSS r-band images, suggesting the presence of extended [OIII]{lambda}5007 emission. We find spatially resolved [OIII] emission (2-35 kpc from the nucleus) in 8 out of 12 of these objects. Combined with samples of higher luminosity type 2 AGN, we confirm that the size of the narrow-line region (R_NLR) scales with the mid-IR luminosity until the relation flattens at ~10 kpc. Nine out of 12 objects in our sample have regions with broad [OIII] linewidths (w_80>600 km/s), indicating outflows. We define these regions as the kinematically-disturbed region (KDR). The size of the KDR (R_KDR) is typically smaller than R_NLR by few kpc but also correlates strongly with the AGN mid-IR luminosity. Given the unknown density in the gas, we derive a wide range in the energy efficiency {eta}=dot{E}/L_bol=0.01%-30%. We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ~10^8-year durations. Within each episode the AGN flickers on shorter timescales, with a cadence of ~10^6 year active phases separated by ~10^7 years.

Download