Do you want to publish a course? Click here

Tests for scale changes based on pairwise differences

60   0   0.0 ( 0 )
 Added by Daniel Vogel
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In many applications it is important to know whether the amount of fluctuation in a series of observations changes over time. In this article, we investigate different tests for detecting change in the scale of mean-stationary time series. The classical approach based on the CUSUM test applied to the squared centered, is very vulnerable to outliers and impractical for heavy-tailed data, which leads us to contemplate test statistics based on alternative, less outlier-sensitive scale estimators. It turns out that the tests based on Ginis mean difference (the average of all pairwise distances) or generalized Qn estimators (sample quantiles of all pairwise distances) are very suitable candidates. They improve upon the classical test not only under heavy tails or in the presence of outliers, but also under normality. An explanation for this at first counterintuitive result is that the corresponding long-run variance estimates are less affected by a scale change than in the case of the sample-variance-based test. We use recent results on the process convergence of U-statistics and U-quantiles for dependent sequences to derive the limiting distribution of the test statistics and propose estimators for the long-run variance. We perform a simulations study to investigate the finite sample behavior of the test and their power. Furthermore, we demonstrate the applicability of the new change-point detection methods at two real-life data examples from hydrology and finance.



rate research

Read More

71 - Huafeng Xu 2019
When both the difference between two quantities and their individual values can be measured or computational predicted, multiple quantities can be determined from the measurements or predictions of select individual quantities and select pairwise differences. These measurements and predictions form a network connecting the quantities through their differences. Here, I analyze the optimization of such networks, where the trace ($A$-optimal), the largest eigenvalue ($E$-optimal), or the determinant ($D$-optimal) of the covariance matrix associated with the estimated quantities are minimized with respect to the allocation of the measurement (or computational) cost to different measurements (or predictions). My statistical analysis of the performance of such optimal measurement networks -- based on large sets of simulated data -- suggests that they substantially accelerate the determination of the quantities, and that they may be useful in applications such as the computational prediction of binding free energies of candidate drug molecules.
94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide conditions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
Dendrograms are a way to represent evolutionary relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of choice for the sequence alignments (all the genes or sets of genes) results in distinct inferred dendrograms. In this work, we evaluate differences between dendrograms reconstructed with different methodologies and obtained for different sets of organisms chosen at random from a much larger set. A statistical analysis is performed in order to estimate the fluctuation between the results obtained from the different methodologies. This analysis permit us to validate a systematic approach, based on the comparison of the organisms metabolic networks for inferring dendrograms. It has the advantage that it allows the comparison of organisms very far away in the evolutionary tree even if they have no known ortholog gene in common.
The analysis of record-breaking events is of interest in fields such as climatology, hydrology, economy or sports. In connection with the record occurrence, we propose three distribution-free statistics for the changepoint detection problem. They are CUSUM-type statistics based on the upper and/or lower record indicators which occur in a series. Using a version of the functional central limit theorem, we show that the CUSUM-type statistics are asymptotically Kolmogorov distributed. The main results under the null hypothesis are based on series of independent and identically distributed random variables, but a statistic to deal with series with seasonal component and serial correlation is also proposed. A Monte Carlo study of size, power and changepoint estimate has been performed. Finally, the methods are illustrated by analyzing the time series of temperatures at Madrid, Spain. The $textsf{R}$ package $texttt{RecordTest}$ publicly available on CRAN implements the proposed methods.
159 - Damien Challet 2015
A new family of nonparametric statistics, the r-statistics, is introduced. It consists of counting the number of records of the cumulative sum of the sample. The single-sample r-statistic is almost as powerful as Students t-statistic for Gaussian and uniformly distributed variables, and more powerful than the sign and Wilcoxon signed-rank statistics as long as the data are not too heavy-tailed. Three two-sample parametric r-statistics are proposed, one with a higher specificity but a smaller sensitivity than Mann-Whitney U-test and the other one a higher sensitivity but a smaller specificity. A nonparametric two-sample r-statistic is introduced, whose power is very close to that of Welch statistic for Gaussian or uniformly distributed variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا