Do you want to publish a course? Click here

Nuclear Fusion in Laser-Driven Counter-Streaming Collisionless Plasmas

79   0   0.0 ( 0 )
 Added by Changbo Fu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear fusion reactions are the most important processes in nature to power stars and produce new elements, and lie at the center of the understanding of nucleosynthesis in the universe. It is critically important to study the reactions in full plasma environments that are close to true astrophysical conditions. By using laser-driven counter-streaming collisionless plasmas, we studied the fusion D$+$D$rightarrow n +^3$He in a Gamow-like window around 27 keV. The results show that astrophysical nuclear reaction yield can be modulated significantly by the self-generated electromagnetic fields and the collective motion of the plasma. This plasma-version mini-collider may provide a novel tool for studies of astrophysics-interested nuclear reactions in plasma with tunable energies in earth-based laboratories.



rate research

Read More

Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.
In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S-factor in the d+d case (lower Gamow energies), for the d+$^3$He case the data are not precise enough to obtain the S-factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S-factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.
An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field-particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov-Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale (MMS) and Solar Probe Plus missions.
205 - M. Lemoine 2014
The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of charge neutral filaments carrying a current of the same polarity, oriented along the perpendicular current. This ``current-driven filamentation instability grows faster than any other instability studied so far upstream of relativistic shocks, with a growth rate comparable to the plasma frequency. Furthermore, the compensation of the current is associated with a slow-down of the ambient plasma as it penetrates the shock precursor (as viewed in the shock rest frame). This slow-down of the plasma implies that the ``current driven filamentation instability can grow for any value of the shock Lorentz factor, provided the magnetization sigma <~ 10^{-2}. We argue that this instability explains the results of recent particle-in-cell simulations in the mildly magnetized regime.
The expansion of laser-irradiated clusters or nanodroplets depends strongly on the amount of energy delivered to the electrons and can be controlled by using appropriately shaped laser pulses. In this paper, a self-consistent kinetic model is used to analyze the transition from quasineutral, hydrodinamic-like expansion regimes to the Coulomb explosion (CE) regime when increasing the ratio between the thermal energy of the electrons and the electrostatic energy stored in the cluster. It is shown that a suitable double-pump irradiation scheme can produce hybrid expansion regimes, wherein a slow hydrodynamic expansion is followed by a fast CE, leading to ion overtaking and producing multiple ion flows expanding with different velocities. This can be exploited to obtain intracluster fusion reactions in both homonuclear deuterium clusters and heteronuclear deuterium-tritium clusters, as also proved by three-dimensional molecular-dynamics simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا