No Arabic abstract
Galaxies that have fallen into massive haloes may no longer be able to accrete gas from their surroundings, a process referred to as starvation or strangulation of satellites. We study the environmental dependence of gas accretion onto galaxies using the cosmological, hydrodynamical EAGLE simulation. We quantify the dependence of gas accretion on stellar mass, redshift, and environment, using halo mass and galaxy overdensity as environmental indicators. We find a strong suppression, by many orders of magnitude, of the gas accretion rate in dense environments, primarily for satellite galaxies. This suppression becomes stronger at lower redshift. However, the scatter in accretion rates is very large for satellites. This is (at least in part) due to the variation in halocentric radius, since gas accretion is more suppressed at smaller radii. Central galaxies are influenced less strongly by their environment and exhibit less scatter in their gas accretion rates. The star formation rates of both centrals and satellites show similar behaviour to their gas accretion rates. The relatively small differences between gas accretion and star formation rates demonstrate that galaxies generally exhaust their gas reservoir somewhat faster at higher stellar mass, lower redshift, and in denser environments. We conclude that the environmental suppression of gas accretion could directly result in the quenching of star formation.
We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range $0<z<1$, using a sample of dark-matter only cosmological N-body simulations from Le SBARBINE dataset. Using a spherical overdensity algorithm to identify dark-matter haloes, we construct halo merger trees for different values of the over-density $Delta_c$. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius $r_{vir}$, higher overdensities probe satellite mergers in the central region of the cluster, down to $approx 0.06 r_{vir}$, which can be considered a proxy for the accretion of satellite galaxies onto central galaxies. We find that the characteristic merger mass ratio increases for increasing values of $Delta_c$: more than $60%$ of the mass accreted by central galaxies since $zapprox 1$ comes from major mergers. The orbits of satellites accreting onto central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.
In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (${M}_{star} sim 10^{5.5-8}~{rm M}_{odot}$). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction -- due solely to environmental effects -- of $sim 0.52 pm 0.26$ within $1< R/R_{rm vir} < 2$ of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond $2~R_{rm vir}$, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.
The processes taking place in the outermost reaches of spiral disks (the proto-disk) are intimately connected to the build-up of mass and angular momentum in galaxies. The thinness of spiral disks suggests that the activity is mostly quiescent and presumably this region is fed by cool flows coming into the halo from the intergalactic medium. While there is abundant evidence for the presence of a circumgalactic medium (CGM) around disk galaxies as traced by quasar absorption lines, it has been very difficult to connect this material to the outer gas disk. This has been a very difficult transition region to explore because baryon tracers are hard to observe. In particular, HI disks have been argued to truncate at a critical column density N(H) $approx 3times 10^{19}$ cm$^{-2}$ at 30 kpc for an L* galaxy where the gas is vulnerable to the external ionizing background. But new deep observations of nearby L* spirals (e.g. Milky Way, NGC 2997) suggest that HI disks may extend much further than recognised to date, up to 60 kpc at N(H) $approx 10^{18}$ cm$^{-2}$. Motivated by these observations, here we show that a clumpy outer disk of dense clouds or cloudlets is potentially detectable to much larger radii and lower HI column densities than previously discussed. This extended proto-disk component is likely to explain some of the MgII forest seen in quasar spectra as judged from absorption-line column densities and kinematics. We fully anticipate that the armada of new radio facilities and planned HI surveys coming online will detect this extreme outer disk (scree) material. We also propose a variant on the successful Dragonfly technique to go after the very weak H$alpha$ signals expected in the proto-disk region.
We study how the cosmic environment affects galaxy evolution in the Universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O III] and [S II] transitions, provide estimates of a regions electron temperature and number density. From these two quantities and the emission line fluxes [O II] 3727, [O III] 4363, and [O III] 4959,5007, we estimate the abundance of oxygen with the Direct Te method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as re-processed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.
Throughout the Hubble time, gas makes its way from the intergalactic medium into galaxies fuelling their star formation and promoting their growth. One of the key properties of the accreting gas is its angular momentum, which has profound implications for the evolution of, in particular, disc galaxies. Here, we discuss how to infer the angular momentum of the accreting gas using observations of present-day galaxy discs. We first summarize evidence for ongoing inside-out growth of star forming discs. We then focus on the chemistry of the discs and show how the observed metallicity gradients can be explained if gas accretes onto a disc rotating with a velocity 20-30% lower than the local circular speed. We also show that these gradients are incompatible with accretion occurring at the edge of the discs and flowing radially inward. Finally, we investigate gas accretion from a hot corona with a cosmological angular momentum distribution and describe how simple models of rotating coronae guarantee the inside-out growth of disc galaxies.