Spin filtering and thermopower in star coupled quantum dot devices


Abstract in English

We analyze the linear thermoelectric transport properties of devices with three quantum dots in a star configuration. A central quantum dot is tunnel-coupled to source and drain electrodes and to two additional quantum dots. For a wide range of parameters, in the absence of an external magnetic field, the system is a singular Fermi liquid with a non-analytic behavior of the electric transport properties at low energies. The singular behavior is associated with the development of a ferromagnetic or an underscreened Kondo effect, depending on the parameter regime. A magnetic field drives the system into a regular Fermi liquid regime and leads to a large peak ($sim k_B/|e|$) in the spin thermopower as a function of the temperature, and to a $sim 100%$ spin polarized current for a wide range of parameters due to interference effects. We find a qualitatively equivalent behavior for systems with a larger number of side coupled quantum dots, with the maximum value of the spin thermopower decreasing as the number of side-coupled quantum dots increases.

Download