Do you want to publish a course? Click here

Hydrodynamic pairing of soft particles in a confined flow

91   0   0.0 ( 0 )
 Added by Othmane Aouane
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mechanism of hydrodynamics-induced pairing of soft particles, namely closed bilayer membranes (vesicles, a model system for red blood cells) and drops, is studied numerically with a special attention paid to the role of the confinement (the particles are within two rigid walls). This study unveils the complexity of the pairing mechanism due to hydrodynamic interactions. We find both for vesicles and for drops that two particles attract each other and form a stable pair at weak confinement if their initial separation is below a certain value. If the initial separation is beyond that distance, the particles repel each other and adopt a longer stable interdistance. This means that for the same confinement we have (at least) two stable branches. To which branch a pair of particles relaxes with time depends only on the initial configuration. An unstable branch is found between these two stable branches. At a critical confinement the stable branch corresponding to the shortest interdistance merges with the unstable branch in the form of a saddle-node bifurcation. At this critical confinement we have a finite jump from a solution corresponding to the continuation of the unbounded case to a solution which is induced by the presence of walls. The results are summarized in a phase diagram, which proves to be of a complex nature. The fact that both vesicles and drops have the same qualitative phase diagram points to the existence of a universal behavior, highlighting the fact that with regard to pairing the details of mechanical properties of the deformable particles are unimportant. This offers an interesting perspective for simple analytical modeling.



rate research

Read More

Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they interact hydrodynamically by setting the fluid around them into motion, and chemically by modifying the chemical background seen by their neighbours. While most phoretic systems evolve in confined environments due to buoyancy effects, most models focus on their interactions in unbounded flows. Here, we propose a first model for the interaction of phoretic particles in Hele-Shaw confinement and show that in this limit, hydrodynamic and phoretic interactions share not only the same scaling but also the same form, albeit in opposite directions. In essence, we show that phoretic interactions effectively reverse the sign of the interactions that would be obtained for swimmers interacting purely hydrodynamically. Yet, hydrodynamic interactions can not be neglected as they significantly impact the magnitude of the interactions. This model is then used to analyse the behaviour of a suspension. The suspension exhibits swirling and clustering collective modes dictated by the orientational interactions between particles, similar to hydrodynamic swimmers, but here governed by the surface properties of the phoretic particle; the reversal in the sign of the interaction tends to slow down the swimming motion of the particles.
Phoretic particles exploit local self-generated physico-chemical gradients to achieve self-propulsion at the micron scale. The collective dynamics of a large number of such particles is currently the focus of intense research efforts, both from a physical perspective to understand the precise mechanisms of the interactions and their respective roles, as well as from an experimental point of view to explain the observations of complex dynamics as well as formation of coherent large-scale structures. However, an exact modelling of such multi-particle problems is difficult and most efforts so far rely on the superposition of far-field approximations for each particles signature, which are only valid asymptotically in the dilute suspension limit. A systematic and unified analytical framework based on the classical Method of Reflections (MoR) is developed here for both Laplace and Stokes problems to obtain the higher-order interactions and the resulting velocities of multiple phoretic particles, up to any order of accuracy in the radius-to-distance ratio $varepsilon$ of the particles. Beyond simple pairwise chemical or hydrodynamic interactions, this model allows us to account for the generic chemo-hydrodynamic couplings as well as $N$-particle interactions ($Ngeq 3$). The $varepsilon^5$-accurate interaction velocities are then explicitly obtained and the resulting implementation of this MoR model is discussed and validated quantitatively against exact solutions of a few canonical problems.
The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the lattice Boltzmann models (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, ${it Phys. Fluids.}$ ${bf 23}$, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.
We investigate the effects of turbulent fluctuations on the Lagrangian statistics of absorption of a scalar field by tracer particles, as a model for nutrient uptake by suspended non-motile microorganisms. By means of extensive direct numerical simulations of an Eulerian-Lagrangian model we quantify, in terms of the Sherwood number, the increase of the scalar uptake induced by turbulence and its dependence on the Peclet and Reynolds numbers. Numerical results are compared with classical predictions for a stationary shear flow extended here to take into account the presence of a restoring scalar flux. We find that mean field predictions agree with numerical simulations at low Peclet numbers but are unable to describe the large fluctuations of local scalar uptake observed for large Peclet numbers. We also study the role of velocity fluctuations in the local uptake by looking at the temporal correlation between local shear and uptake rate and we find that the latter follows fluid velocity fluctuations with a delay given by Kolmogorov time scale. The relevance of our results for aquatic microorganisms is also discussed.
We develop a framework for analyzing the momentum balance of laminar particle-laden flows based on immersed boundary methods, which solve the Navier-Stokes equations and resolve the particle surfaces. This framework differs from previous studies by explicitly accounting for the fluid inside the particles, which is a by-product of the immersed boundary method, allowing us to close the momentum balance for the flow around a single rolling sphere. We then compute a momentum balance of a laminar Poiseuille flow over a dense bed of particles, finding that the stresses remain in equilibrium even during unsteady flow conditions. While previous studies have focused on stresses for the streamwise momentum balance, the present approach also allows us to evaluate stress balances in the vertical direction, which are necessary to understand the role that collisions and hydrodynamic drag play during dilation and contraction of particle beds. While our analysis accounts for the fluid and particle phases separately, we attempt to establish a momentum balance for the fluid/particle mixture, but find that it does not completely close locally due to collision stresses not being resolved across the particle diameter. However, we find a correlation between the local shear rate and the gap in the mixture balance, which can potentially be used to close the balance for the mixture.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا