On Explicit Approximations for Levy Driven SDEs with Super-linear Diffusion Coefficients


Abstract in English

Motivated by the results of cite{sabanis2015}, we propose explicit Euler-type schemes for SDEs with random coefficients driven by Levy noise when the drift and diffusion coefficients can grow super-linearly. As an application of our results, one can construct explicit Euler-type schemes for SDEs with delays (SDDEs) which are driven by Levy noise and have super-linear coefficients. Strong convergence results are established and their rate of convergence is shown to be equal to that of the classical Euler scheme. It is proved that the optimal rate of convergence is achieved for $mathcal{L}^2$-convergence which is consistent with the corresponding results available in the literature.

Download