The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS-UDS


Abstract in English

We present a multi-wavelength analysis of 52 sub-millimeter galaxies (SMGs), identified using ALMA 870$mu$m continuum imaging in a pilot program to precisely locate bright SCUBA2-selected sub-mm sources in the UKIDSS Ultra Deep Survey (UDS) field. Using the available deep (especially near-infrared), panoramic imaging of the UDS field at optical-to-radio wavelengths we characterize key properties of the SMG population. The median photometric redshift of the bright ALMA/SCUBA-2 UDS (AS2UDS) SMGs that are detected in a sufficient number of wavebands to derive a robust photometric redshift is $z$=2.65$pm$0.13. However, similar to previous studies, 27% of the SMGs are too faint at optical-to-near-infrared wavelengths to derive a reliable photometric redshift. Assuming that these SMGs lie at z$gtrsim$3 raises the median redshift of the full sample to $z$=2.9$pm$0.2. A subset of 23, unlensed, bright AS2UDS SMGs have sizes measured from resolved imaging of their rest-frame far-infrared emission. We show that the extent and luminosity of the far-infrared emission are consistent with the dust emission arising from regions that are optically thick, on average, at a wavelength of $lambda_0$$ge$75$mu$m (1-$sigma$ dispersion of 55-90$mu$m). Using the dust masses derived from our optically-thick spectral energy distribution models we determine that these galaxies have a median hydrogen column density of $N_{H}$=9.8$_{-0.7}^{+1.4}$$times$10$^{23}$cm$^{-2}$, or a corresponding median $V$-band obscuration of $A_mathrm{v}$=540$^{+80}_{-40}$mag, averaged along the line of sight to the source of their restframe $sim$200$mu$m emission. We discuss the implications of this extreme attenuation by dust for the multiwavelength study of dusty starbursts and reddening-sensitive tracers of star formation.

Download