On The Effective Construction of Asymmetric Chudnovsky Multiplication Algorithms in Finite Fields Without Derivated Evaluation


Abstract in English

The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. We describe the effective algorithm of this asymmetric method, without derivated evaluation. Finally, we give examples with the finite field $F_{16^{13}}$ using only rational places, $F_{4^{13}}$ using also places of degree two and $F_{2^{13}}$ using also places of degree four.

Download