Do you want to publish a course? Click here

Evidence for Reduced Specific Star Formation Rates in the Centers of Massive Galaxies at z = 4

236   0   0.0 ( 0 )
 Added by Intae Jung
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform the first spatially-resolved stellar population study of galaxies in the early universe (z = 3.5 - 6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) imaging dataset over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5 - 6.5 from a parent sample of ~ 8000 photometric-redshift selected galaxies from Finkelstein et al. (2015). We first examine galaxies at 3.5< z < 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey (HUGS) which covers the 4000A break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially-resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with the high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ~ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ~ 5 - 6, contrary to massive galaxies at z < 4.



rate research

Read More

We report the results of a comprehensive study of the relationship between galaxy size, stellar mass and specific star-formation rate (sSFR) at redshifts 1.3<z<1.5. Based on a mass complete (M_star >= 6x10^10 Msun), spectroscopic sample from the UKIDSS Ultra-deep Survey (UDS), with accurate stellar-mass measurements derived from spectro photometric fitting, we find that at z~1.4 the location of massive galaxies on the size-mass plane is determined primarily by their sSFR. At this epoch we find that massive galaxies which are passive (sSFR <= 0.1 Gyr^-1) follow a tight size-mass relation, with half-light radii a factor f=2.4+/-0.2 smaller than their local counterparts. Moreover, amongst the passive sub-sample we find no evidence that the off-set from the local size-mass relation is a function of stellar population age. Based on a sub-sample with dynamical mass estimates we also derive an independent estimate of f=2.3+/-0.3 for the typical growth in half-light radius between z~1.4 and the present day. Focusing on the passive sub-sample, we conclude that to produce the necessary evolution predominantly via major mergers would require an unfeasible number of merger events and over populate the high-mass end of the local stellar mass function. In contrast, we find that a scenario in which mass accretion is dominated by minor mergers can produce the necessary evolution, whereby an increase in stellar mass by a factor of ~2, accompanied by an increase in size by a factor of ~3.5, is sufficient to reconcile the size-mass relation at z~1.4 with that observed locally. Finally, we note that a significant fraction (44+/-12%) of the passive galaxies in our sample have a disk-like morphology, providing additional evidence that separate physical processes are responsible for the quenching of star-formation and the morphological transformation of massive galaxies (abridged).
We investigate the location of an ultra-hard X-ray selected sample of AGN from the Swift Burst Alert Telescope (BAT) catalog with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and stellar mass (mstar) from Sloan Digital Sky Survey (SDSS) photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and mstar{} as the Swift/BAT AGN. We find a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.
Using analytic modeling and simulations, we address the origin of an abundance of star-forming, clumpy, extended gas rings about massive central bodies in massive galaxies at $z !<! 4$. Rings form by high-angular-momentum streams and survive in galaxies of $M_{rm star} !>! 10^{9.5-10} M_odot$ where merger-driven spin flips and supernova feedback are ineffective. The rings survive after events of compaction to central nuggets. Ring longevity was unexpected based on inward mass transport driven by torques from violent disc instability. However, evaluating the torques from a tightly wound spiral structure, we find that the timescale for transport per orbital time is long and $propto! delta_{rm d}^{-3}$, with $delta_{rm d}$ the cold-to-total mass ratio interior to the ring. A long-lived ring forms when the ring transport is slower than its replenishment by accretion and the interior depletion by SFR, both valid for $delta_{rm d} !<! 0.3$. The central mass that lowers $delta_{rm d}$ is a compaction-driven bulge and/or dark matter, aided by the lower gas fraction at $z !<! 4$, provided that it is not too low. The ring is Toomre unstable for clump and star formation. The high-$z$ dynamic rings are not likely to arise form secular resonances or collisions. AGN feedback is not expected to affect the rings. Mock images of simulated rings through dust indicate qualitative consistency with observed rings about bulges in massive $z!sim!0.5!-!3$ galaxies, in $H_{alpha}$ and deep HST imaging. ALMA mock images indicate that $z!sim!0.5!-!1$ rings should be detectable. We quote expected observable properties of rings and their central nuggets.
179 - R. Nordon , D. Lutz , L. Shao 2010
The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z~2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redshift that are typically a factor 4 or more lower than the measurements. We present star-formation rates based on calorimetric measurements of the far-infrared (FIR) luminosities for massive 1.5<z<2.5, normal star-forming galaxies (SFGs), which do not depend on extinction corrections and/or extrapolations of spectral energy distributions. The measurements are based on observations in GOODS-N with the Photodetector Array Camera & Spectrometer (PACS) onboard Herschel, as part of the PACS Evolutionary Probe (PEP) project, that resolve for the first time individual SFGs at these redshifts at FIR wavelengths. We compare FIR-based SFRs to the more commonly used 24 micron and UV SFRs. We find that SFRs from 24 micron alone are higher by a factor of ~4-7.5 than the true SFRs. This overestimation depends on luminosity: gradually increasing for log L(24um)>12.2 L_sun. The SFGs and AGNs tend to exhibit the same 24 micron excess. The UV SFRs are in closer agreement with the FIR-based SFRs. Using a Calzetti UV extinction correction results in a mean excess of up to 0.3 dex and a scatter of 0.35 dex from the FIR SFRs. The previous UV SFRs are thus confirmed and the mean excess, while narrowing the gap, is insufficient to explain the discrepancy between the observed SFRs and simulation predictions.
This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity -- the equivalent width of the Ha line and the $(u-r)$ colour -- with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of $sim82500$ galaxies extracted from the Sloan Digital Sky Survey (SDSS). The existence of a relatively tight `ageing sequence in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. `nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive (metal-poor and intensely star-forming) state to a `chemically evolved (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. `nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching and `rejuvenation episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(H$alpha$) and bluer $(u-r)$ colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time scale in dense environments, where many objects are found on a `quenched sequence in the colour-equivalent width plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا