Do you want to publish a course? Click here

Physical characterization of Galactic O-type stars targeted by the IACOB and OWN surveys

148   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first results from the quantitative spectroscopic analysis of 266 Galactic O-type stars targeted by the IACOB and OWN surveys (implying the largest sample of stars of this type analyzed homogeneously). We also evaluate what is the present situation regarding available information about distances, as provided by the Hipparcos and Gaia missions.



rate research

Read More

Massive stars play a key role in the evolution of the Universe. Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. We used a sample of 53 objects with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, using optical spectroscopy and applying the FASTWIND code. For the remaining objects, literature data, obtained by means of the CMFGEN code, were used instead. The properties of our sample were compared to published predictions based on two grids evolution models that include rotationally induced mixing. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, a correlation of the surface nitrogen and helium abundances is observed. The large number of nitrogen-enriched stars above ~30 solar masses argues for rotationally induced mixing as the most likely explanation. However, none of the considered models can match the observed trends correctly, especially in the high mass regime. We confirm mass discrepancy for objects in the low mass O-star regime. We conclude that the rotationally induced mixing of helium to the stellar surface is too strong in some of the models. We also suggest that present inadequacies of the models to represent the N enrichment in more massive stars with relatively slow rotation might be related to problematic efficiencies of rotational mixing. We are left with a picture in which invoking binarity and magnetic fields is required to achieve a more complete agreement of the observed surface properties of a population of massive main- sequence stars with corresponding evolutionary models.
Lack of high-precision long-term continuous photometric data for large samples of stars has prevented the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling remained limited to a few tens of dwarfs. The TESS nominal space mission has surveyed the southern sky, yielding continuous data of at least 27 d for hundreds of OB stars. We aim to couple TESS data in the southern sky with spectroscopy to study the variability over mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data. We compose a sample of 98 OB-type stars observed by TESS in Sectors 1-13 and with available high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2-min light curves of dozens of OB-type stars, that have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb-Scargle periodograms we perform variability classification and frequency analysis, and place the stars in the spectroscopic Hertzsprung-Russell diagram to interpret the variability in an evolutionary context. We deduce diverse origins of the variability found in all of the 98 OB stars in the TESS data. Among these we find several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars. We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips we discuss the current shortcomings in non-adiabatic pulsation theory, and the distribution of pulsators in the upper Hertzsprung-Russell diagram.
We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. We use high-resolution spectra of ~430 stars with spectral types in the range O4-B9 (all luminosity classes). We characterize the line-broadening of adequate diagnostic metal lines using a combined FT and GOF technique. We perform a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of FASTWIND models. We also incorporate quantitative information about line asymmetries to our observational description of the characteristics of the line-profiles, and present a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main sequence stars with variable line-profiles. We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star domain. We find empirical evidence of the existence of various types of non-rotational broadening agents acting in the realm of massive stars. Even though all of them could be quoted and quantified as a macroturbulent broadening from a practical point of view, their physical origin can be different. Contrarily to the early- to late-B dwarfs/giants, which present a mixture of cases in terms of line-profile shape and variability, the whole O-type and B supergiant domain (or, roughly speaking, stars with M_ZAMS > 15 M_sol) is fully dominated by stars with a remarkable non-rotational broadening component and very similar profiles (including type of variability). We provide some examples illustrating how this observational dataset can be used to evaluate scenarios aimed at explaining the existence of sources of non-rotational broadening in massive stars.
We investigate the morphology and kinematics of the Galactic spiral structure based on a new sample of O- and early B-type stars. We select 6,858 highly confident OB star candidates from the combined data of the VST Photometric H$alpha$ Survey Data Release 2 (VPHAS+ DR2) and the Gaia Data Release 2 (Gaia DR2). Together with the O-B2 stars from the literature, we build a sample consisting of 14,880 O- and early B-type stars, all with Gaia parallax uncertainties smaller than 20 per cent. The new sample, hitherto the largest one of O- and early B-type stars with robust distance and proper motion estimates, covers the Galactic plane of distances up to $sim$ 6 kpc from the Sun. The sample allows us to examine the morphology of the Scutum, Sagittarius, Local and Perseus Arms in great detail. The spiral structure of the Milky Way as traced by O- and early B-type stars shows flocculent patterns. Accurate structure parameters, as well as the means and dispersions of the vertical velocity distributions of the individual Spiral Arms are presented.
The model atmosphere programs FASTWIND and CMFGEN are both elegantly designed to perform non-LTE analyses of the spectra of hot massive stars, and include sphericity and mass-loss. The two codes differ primarily in their approach towards line blanketing, with CMFGEN treating all of the lines in the co-moving frame and FASTWIND taking an approximate approach which speeds up execution times considerably. Although both have been extensively used to model the spectra of O-type stars, no studies have used the codes to independently model the same spectra of the same stars and compare the derived physical properties. We perform this task on ten O-type stars in the Magellanic Clouds. For the late-type O supergiants, both CMFGEN and FASTWIND have trouble fitting some of the He I lines, and we discuss causes and cures. We find that there is no difference in the average effective temperatures found by the two codes for the stars in our sample, although the dispersion is large, due primarily to the various difficulties each code has with He I. The surface gravities determined using FASTWIND are systematically lower by 0.12 dex compared to CMFGEN, a result we attribute to the better treatment of electron scattering by CMFGEN. This has implications for the interpretation of the origin of the so-called mass discrepancy, as the masses derived by FASTWIND are on average lower than inferred from stellar evolutionary models, while those found by CMFGEN are in better agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا