Do you want to publish a course? Click here

Topological susceptibility in finite temperature (2+1)-flavor QCD using gradient flow

81   0   0.0 ( 0 )
 Added by Yusuke Taniguchi
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations on a fine lattice with~$asimeq0.07,mathrm{fm}$ at a heavy $u$, $d$ quark mass with $m_pi/m_rhosimeq0.63$ but approximately physical $s$ quark mass with $m_{eta_{ss}}/m_phisimeq0.74$. In a temperature range from~$Tsimeq174,mathrm{MeV}$ ($N_t=16$) to $697,mathrm{MeV}$ ($N_t=4$), we study two topics on the topological susceptibility. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Because the two definitions are related by chiral Ward-Takahashi identities, their equivalence is not trivial for lattice quarks which violate the chiral symmetry explicitly at finite lattice spacings. The gradient flow method enables us to compute them without being bothered by the chiral violation. We find a good agreement between the two definitions with Wilson quarks. The other is a comparison with a prediction of the dilute instanton gas approximation, which is relevant in a study of axions as a candidate of the dark matter in the evolution of the Universe. We find that the topological susceptibility shows a decrease in $T$ which is consistent with the predicted $chi_mathrm{t}(T) propto (T/T_{rm pc})^{-8}$ for three-flavor QCD even at low temperature $T_{rm pc} < Tle1.5 T_{rm pc}$.

rate research

Read More

We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of $58~{rm MeV}lesssim m_pilesssim 163~{rm MeV}$. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of $2.8$-$4.5$ times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cut-off, corresponding to lattices with temporal extent $N_tau=6, 8$ and $12$. After thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature $T_c^0=132^{+3}_{-6}$ MeV.
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two definitions are related by the chiral Ward-Takahashi identity but their coincidence is highly non-trivial for the Wilson fermion. By applying the gradient flow both for the gauge and quark fields we find a good agreement of these two measurements. The other is a verification of a prediction of the dilute instanton gas approximation at low temperature region $T_{pc}< T<1.5T_{pc}$, for which we confirm the prediction that the topological susceptibility decays with power $chi_{t}propto(T/T_{pc})^{-8}$ for three flavors QCD.
73 - S. Aoki 2017
We study the topological charge in $N_f=2$ QCD at finite temperature using Mobius domain-wall fermions. The susceptibility $chi_t$ of the topological charge defined either by the index of overlap Dirac operator or a gluonic operator is investigated at several values of temperature $T (>T_c)$ varying the quark mass. A strong suppression of the susceptibility is observed below a certain value of the quark mass. The relation with the restoration of $U_A(1)$ is discussed.
We compute the topological susceptibility $chi_t$ of 2+1-flavor lattice QCD with dynamical Mobius domain-wall fermions, whose residual mass is kept at 1 MeV or smaller. In our analysis, we focus on the fluctuation of the topological charge density in a slab sub-volume of the simulated lattice, as proposed by Bietenholz et al. The quark mass dependence of our results agrees well with the prediction of the chiral perturbation theory, from which the chiral condensate is extracted. Combining the results for the pion mass $M_pi$ and decay constant $F_pi$, we obtain $chi_t$ = 0.227(02)(11)$M_pi^2 F_pi^2$ at the physical point, where the first error is statistical and the second is systematic.
We study correlation functions of spatially separated static quark-antiquark pairs in (2+1)-flavor QCD in order to investigate onset and nature of color screening at high temperatures. We perform lattice calculations in a wide temperature range, $140 le T le 5814,{rm MeV}$, using the highly improved staggered quark action and several lattice spacings to control discretization effects. By comparing at high temperatures our lattice results to weak-coupling calculations as well as to the zero temperature result for the energy of a static quark-antiquark pair, we observe that color screening sets in at $rT approx 0.3$. Furthermore, we also observe that in the range $0.3 lesssim r T lesssim 0.6$ weak-coupling calculations in the framework of suitable effective field theories provide an adequate picture of color screening.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا