Active demultiplexing of single-photons from a solid-state source


Abstract in English

A scheme for active temporal-to-spatial demultiplexing of single-photons generated by a solid-state source is introduced. The scheme scales quasi-polynomially with photon number, providing a viable technological path for routing n photons in the one temporal stream from a single emitter to n different spatial modes. The active demultiplexing is demonstrated using a state-of-the-art photon source---a quantum-dot deterministically coupled to a micropillar cavity---and a custom-built demultiplexer---a network of electro-optically reconfigurable waveguides monolithically integrated in a lithium niobate chip. The measured demultiplexer performance can enable a six-photon rate three orders of magnitude higher than the equivalent heralded SPDC source, providing a platform for intermediate quantum computation protocols.

Download