Do you want to publish a course? Click here

Covariant derivative of fermions and all that

150   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present detailed pedagogical derivation of covariant derivative of fermions and some related expressions, including commutator of covariant derivatives and energy-momentum tensor of a free Dirac field. The text represents a part of the initial chapter of a one-semester course on semiclassical gravity.



rate research

Read More

122 - Partha Mukhopadhyay 2012
We consider tubular neighborhood of an arbitrary submanifold embedded in a (pseudo-)Riemannian manifold. This can be described by Fermi normal coordinates (FNC) satisfying certain conditions as described by Florides and Synge in cite{FS}. By generalizing the work of Muller {it et al} in cite{muller} on Riemann normal coordinate expansion, we derive all order FNC expansion of vielbein in this neighborhood with closed form expressions for the curvature expansion coefficients. Our result is shown to be consistent with certain integral theorem for the metric proved in cite{FS}.
161 - Xian Gao , Yu-Min Hu 2020
We investigate the correspondence between generally covariant higher derivative scalar-tensor theory and spatially covariant gravity theory. The building blocks are the scalar field and spacetime curvature tensor together with their generally covariant derivatives for the former, and the spatially covariant geometric quantities together with their spatially covariant derivatives for the later. In the case of a single scalar degree of freedom, they are transformed to each other by gauge fixing and recovering procedures, of which we give the explicit expressions. We make a systematic classification of all the scalar monomials in the spatially covariant gravity according to the total number of derivatives up to $d=4$, and their correspondence to the scalar-tensor monomials. We discusse the possibility of using spatially covariant monomials to generate ghostfree higher derivative scalar-tensor theories. We also derive the covariant 3+1 decomposition without fixing any specific coordinate, which will be useful when performing a covariant Hamiltonian analysis.
76 - Xian Gao 2020
We investigate the ghostfree scalar-tensor theory with a timelike scalar field, with derivatives of the scalar field up to the third order and with the Riemann tensor up to the quadratic order. We build two types of linear spaces. One is the set of linearly independent generally covariant scalar-tensor monomials, the other is the set of linearly independent spatially covariant gravity monomials. We argue that these two types of linear space are isomorphic to each other in the sense of gauge fixing/recovering procedures. We then identify the subspaces in the spatially covariant gravity, which are spanned by linearly independent monomials built of the extrinsic and intrinsic curvature, the lapse function as well as their spatial derivatives, up to the fourth order in the total number of derivatives. The vectors in these subspaces, i.e., spatially covariant polynomials, automatically propagate at most three degrees of freedom. As a result, their images under the gauge recovering mappings are automatically the subspaces of scalar-tensor theory that propagate up to three degrees of freedom as long as the scalar field is timelike. The mappings from the spaces of spatially covariant gravity to the spaces of scalar-tensor theory are encoded in the projection matrices, of which we also derived the expressions explicitly. Our formalism and results can be useful in deriving the generally covariant higher derivative scalar-tensor theory without ghost(s).
236 - Kuang Zhang , G.E. Volovik 2016
The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In this case the horizon with Painleve-Gullstrand metric serves as the surface of the Lifshitz transition. This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using the fermionic superfluid with supercritical velocity, and the Dirac and Weyl semimetals with the interface separating the type-I and type-II states. The difference between such type of the artificial event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. Different configurations of the Fermi surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point connects the Fermi pockets, and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (flat) band with zero energy and singular density of states, which opens the route to room-temperature superconductivity.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a cause of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the $Lambda$CDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function $phi(t)$ here.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا