No Arabic abstract
The Residual Network (ResNet), proposed in He et al. (2015), utilized shortcut connections to significantly reduce the difficulty of training, which resulted in great performance boosts in terms of both training and generalization error. It was empirically observed in He et al. (2015) that stacking more layers of residual blocks with shortcut 2 results in smaller training error, while it is not true for shortcut of length 1 or 3. We provide a theoretical explanation for the uniqueness of shortcut 2. We show that with or without nonlinearities, by adding shortcuts that have depth two, the condition number of the Hessian of the loss function at the zero initial point is depth-invariant, which makes training very deep models no more difficult than shallow ones. Shortcuts of higher depth result in an extremely flat (high-order) stationary point initially, from which the optimization algorithm is hard to escape. The shortcut 1, however, is essentially equivalent to no shortcuts, which has a condition number exploding to infinity as the number of layers grows. We further argue that as the number of layers tends to infinity, it suffices to only look at the loss function at the zero initial point. Extensive experiments are provided accompanying our theoretical results. We show that initializing the network to small weights with shortcut 2 achieves significantly better results than random Gaussian (Xavier) initialization, orthogonal initialization, and shortcuts of deeper depth, from various perspectives ranging from final loss, learning dynamics and stability, to the behavior of the Hessian along the learning process.
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramer GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.
Residual connections significantly boost the performance of deep neural networks. However, there are few theoretical results that address the influence of residuals on the hypothesis complexity and the generalization ability of deep neural networks. This paper studies the influence of residual connections on the hypothesis complexity of the neural network in terms of the covering number of its hypothesis space. We prove that the upper bound of the covering number is the same as chain-like neural networks, if the total numbers of the weight matrices and nonlinearities are fixed, no matter whether they are in the residuals or not. This result demonstrates that residual connections may not increase the hypothesis complexity of the neural network compared with the chain-like counterpart. Based on the upper bound of the covering number, we then obtain an $mathcal O(1 / sqrt{N})$ margin-based multi-class generalization bound for ResNet, as an exemplary case of any deep neural network with residual connections. Generalization guarantees for similar state-of-the-art neural network architectures, such as DenseNet and ResNeXt, are straight-forward. From our generalization bound, a practical implementation is summarized: to approach a good generalization ability, we need to use regularization terms to control the magnitude of the norms of weight matrices not to increase too much, which justifies the standard technique of weight decay.
Residual networks (ResNets) have recently achieved state-of-the-art on challenging computer vision tasks. We introduce Resnet in Resnet (RiR): a deep dual-stream architecture that generalizes ResNets and standard CNNs and is easily implemented with no computational overhead. RiR consistently improves performance over ResNets, outperforms architectures with similar amounts of augmentation on CIFAR-10, and establishes a new state-of-the-art on CIFAR-100.
The information bottleneck principle (Shwartz-Ziv & Tishby, 2017) suggests that SGD-based training of deep neural networks results in optimally compressed hidden layers, from an information theoretic perspective. However, this claim was established on toy data. The goal of the work we present here is to test whether the information bottleneck principle is applicable to a realistic setting using a larger and deeper convolutional architecture, a ResNet model. We trained PixelCNN++ models as inverse representation decoders to measure the mutual information between hidden layers of a ResNet and input image data, when trained for (1) classification and (2) autoencoding. We find that two stages of learning happen for both training regimes, and that compression does occur, even for an autoencoder. Sampling images by conditioning on hidden layers activations offers an intuitive visualisation to understand what a ResNets learns to forget.
The appeal of serverless (FaaS) has triggered a growing interest on how to use it in data-intensive applications such as ETL, query processing, or machine learning (ML). Several systems exist for training large-scale ML models on top of serverless infrastructures (e.g., AWS Lambda) but with inconclusive results in terms of their performance and relative advantage over serverful infrastructures (IaaS). In this paper we present a systematic, comparative study of distributed ML training over FaaS and IaaS. We present a design space covering design choices such as optimization algorithms and synchronization protocols, and implement a platform, LambdaML, that enables a fair comparison between FaaS and IaaS. We present experimental results using LambdaML, and further develop an analytic model to capture cost/performance tradeoffs that must be considered when opting for a serverless infrastructure. Our results indicate that ML training pays off in serverless only for models with efficient (i.e., reduced) communication and that quickly converge. In general, FaaS can be much faster but it is never significantly cheaper than IaaS.