Do you want to publish a course? Click here

A framework for second-order parton showers

106   0   0.0 ( 0 )
 Added by Peter Zeiler Skands
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A framework is presented for including second-order perturbative corrections to the radiation patterns of parton showers. The formalism allows to combine O(alphaS^2)-corrected iterated 2->3 kernels for ordered gluon emissions with tree-level 2->4 kernels for unordered ones. The combined Sudakov evolution kernel is thus accurate to O(alphaS^2). As a first step towards a full-fledged implementation of these ideas, we develop an explicit implementation of 2->4 shower branchings in this letter.



rate research

Read More

We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solves the problem of treating both the hard scattering and the evolution kernels to be used in arbitrarily non-leading order. Although we only treat collinear showering, so that further extensions are needed for QCD, we have discovered several new results: (1) It is better to generate exact parton kinematics in the hard scattering rather than with the subsequent parton showering, and similarly at each step of the showering. (2) Parton showering is then done conditionally on the exact energy-momentum of the initiating parton. (3) We obtain a factorization for structure functions in terms of parton correlation functions so that parton kinematics can be treated exactly from the beginning. (4) We obtain two factorization properties for parton correlation functions, one in terms of ordinary parton densities and one, suitable for event generation, in terms of parton correlation functions themselves.
We present the determination of Transverse Momentum Dependent (TMD) parton distributions from Monte Carlo parton showers. We investigate the effective TMD distributions obtained from the PYTHIA8 and HERWIG6 parton showers and compare them to the TMD distributions determined within the Parton Branching method.
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests that this probability, when multiplied by the ratio of the parton distributions at the two scales, should be independent of the parton distribution functions. We call this the PDF property. We examine whether the PDF property actually holds using Pythia and Deductor. We also test a related property for the Deductor shower and discuss the physics behind the results.
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.
70 - R. Kuhn 2000
A Monte-Carlo event-generator has been developed which is dedicated to simulate electron-positron annihilations. Especially a new approach for the combination of matrix elements and parton showers ensures the independence of the hadronization parameters from the CMS energy. This enables for the first time the description of multijet-topologies, e.g. four jet angles, over a wide range of energy, without changing any parameter of the model. Covering all processes of the standard model our simulator is capable to describe experiments at present and future accelerators, i.e. the LEP collider and a possible Next Linear Collider(NLC).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا