Do you want to publish a course? Click here

Gluing affine vortices

57   0   0.0 ( 0 )
 Added by Guangbo Xu
 Publication date 2016
  fields Physics
and research's language is English
 Authors Guangbo Xu




Ask ChatGPT about the research

We construct a gluing map for stable affine vortices over the upper half plane with the Lagrangian boundary condition at a rigid, regular, codimension one configuration. This construction plays an important role in establishing the relation between the gauged linear sigma model and the nonlinear sigma model in the presence of Lagrangian branes.



rate research

Read More

We show that the moduli space of regular affine vortices, which are solutions of the symplectic vortex equation over the complex plane, has the structure of a smooth manifold. The construction uses Zilteners Fredholm theory results [31]. We also extend the result to the case of affine vortices over the upper half plane. These results are necessary ingredients in defining the open quantum Kirwan map proposed by Woodward [24].
104 - Sikimeti Mau 2009
We construct families of quilted surfaces parametrized by the multiplihedra, and define moduli spaces of pseudoholomorphic quilted disks using the theory of pseudoholomorphic quilts of Wehrheim and Woodward. We prove a gluing theorem for regular, isolated pseudoholomorphic quilted disks. This analytical result is a fundamental ingredient for the construction of A-infinity functors associated to Lagrangian correspondences.
147 - Mykola Dedushenko 2018
We describe applications of the gluing formalism discussed in the companion paper. When a $d$-dimensional local theory $text{QFT}_d$ is supersymmetric, and if we can find a supersymmetric polarization for $text{QFT}_d$ quantized on a $(d-1)$-manifold $W$, gluing along $W$ is described by a non-local $text{QFT}_{d-1}$ that has an induced supersymmetry. Applying supersymmetric localization to $text{QFT}_{d-1}$, which we refer to as the boundary localization, allows in some cases to represent gluing by finite-dimensional integrals over appropriate spaces of supersymmetric boundary conditions. We follow this strategy to derive a number of `gluing formulas in various dimensions, some of which are new and some of which have been previously conjectured. First we show how gluing in supersymmetric quantum mechanics can reduce to a sum over a finite set of boundary conditions. Then we derive two gluing formulas for 3D $mathcal{N}=4$ theories on spheres: one providing the Coulomb branch representation of gluing, and another providing the Higgs branch representation. This allows to study various properties of their $(2,2)$-preserving boundary conditions in relation to Mirror Symmetry. After that we derive a gluing formula in 4D $mathcal{N}=2$ theories on spheres, both squashed and round. First we apply it to predict the hemisphere partition function, then we apply it to the study of boundary conditions and domain walls in these theories. Finally, we mention how to glue half-indices of 4D $mathcal{N}=2$ theories.
We prove a gluing theorem for a symplectic vortex on a compact complex curve and a collection of holomorphic sphere bubbles. Using the theorem we show that the moduli space of regular stable symplectic vortices on a fixed curve with varying markings has the structure of a stratified-smooth topological orbifold. In addition, we show that the moduli space has a non-canonical $C^1$-orbifold structure.
170 - Mykola Dedushenko 2018
We review some aspects of the cutting and gluing law in local quantum field theory. In particular, we emphasize the description of gluing by a path integral over a space of polarized boundary conditions, which are given by leaves of some Lagrangian foliation in the phase space. We think of this path integral as a non-local $(d-1)$-dimensional gluing theory associated to the parent local $d$-dimensional theory. We describe various properties of this procedure and spell out conditions under which symmetries of the parent theory lead to symmetries of the gluing theory. The purpose of this paper is to set up a playground for the companion paper where these techniques are applied to obtain new results in supersymmetric theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا