Although somatic mutations are the main contributor to cancer, underlying germline alterations may increase the risk of cancer, mold the somatic alteration landscape and cooperate with acquired mutations to promote the tumor onset and/or maintenance. Therefore, both tumor genome and germline sequence data have to be analyzed to have a more complete picture of the overall genetic foundation of the disease. To reinforce such notion we quantitatively assess the bias of restricting the analysis to somatic mutation data using mutational data from well-known cancer genes which displays both types of alterations, inherited and somatically acquired mutations.