Do you want to publish a course? Click here

Complete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9-2854

44   0   0.0 ( 0 )
 Added by Dr. Thomas Rauch
 Publication date 2016
  fields Physics
and research's language is English
 Authors D. Hoyer




Ask ChatGPT about the research

In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the density of the interstellar medium (ISM) is very low, and thus the contamination of the stellar spectrum almost negligible. This allows us to identify many metal lines in a wide wavelength range from the extreme ultraviolet to the near infrared. In previous spectral analyses, many metal lines in the ultraviolet spectrum of RX J0503.9-2854 have been identified. A complete line list of observed and identified lines is presented here. We compared synthetic spectra that had been calculated from model atmospheres in non-local thermodynamical equilibrium, with observations. In total, we identified 1272 lines (279 of them were newly assigned) in the wavelength range from the extreme ultraviolet to the near infrared. 287 lines remain unidentified. A close inspection of the EUV shows that still no good fit to the observed shape of the stellar continuum flux can be achieved although He, C, N, O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni Zn, Ga, Ge, As, Kr, Zr, Mo, Sn, Xe, and Ba are included in the stellar atmosphere models. There are two possible reasons for the deviation between observed and synthetic flux in the EUV. Opacities from hitherto unconsidered elements in the model-atmosphere calculation may be missing and/or the effective temperature is slightly lower than previously determined.



rate research

Read More

59 - K. Werner , T. Rauch , N. Reindl 2018
There is a striking paucity of hydrogen-rich (DA) white dwarfs (WDs) relative to their hydrogen-deficient (non-DA) counterparts at the very hot end of the WD cooling sequence. The three hottest known DAs (surface gravity log g $geq$ 7.0) have effective temperatures around Teff = 140,000 K, followed by only five objects in the range 104,000 - 120,000 K. They are by far outnumbered by forty non-DAs with Teff = 100,000 - 250,000 K, giving a DA/non-DA ratio of 0.2. In contrast, this ratio is the inverse of that for the cooler WDs. One reason for this discrepancy could be uncertainties in the temperature determination of hot DAs using Balmer-line spectroscopy. Recent investigations involving metal-ionization balances in ultraviolet (UV) spectra indeed showed that the temperatures of some DAs were underestimated, but the paucity of extremely hot DAs prevailed. Here we present the results of a UV spectral analysis of one of the three hottest DAs, PG0948+534. We find that its temperature was strongly overestimated by recent Balmer line analyses. We correct it downward to 105,000 $pm$ 5000 K, aggravating the hot-DA paucity. The Balmer-line problem encountered previously is not resolved by our non-LTE line-blanketed model atmospheres. We speculate that it might be related to the possible presence of a magnetosphere. This is supported by the V-band variability that shows a period of P=3.45 d (amplitude 0.19 mag), which we interpret as the stars rotation period. The metal abundances in PG0948+534 are affected by atomic diffusion and we conclude that the onset of diffusion in hot DAs occurs when they cool below Teff about 105,000 K. We discuss the possibility that the paucity of very hot DAs is a consequence of their fast evolutionary rate.
We present the mass distribution for all S/N > 15 pure DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12, fitted with Koester models for ML2/alpha=0.8, and with Teff > 10 000 K, and for DBs with S/N >10, fitted with ML2/alpha=1.25, for Teff > 16 000 K. These mass distributions are for log g > 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 Msun but very distinct shapes. From the estimated z-distances, we deduce a disk scale height of 300 pc. We also present 10 probable halo white dwarfs, from their galactic U, V, W velocities.
As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (type DA), most likely through the upward diffusion of residual hydrogen. Our empirical knowledge of this process remains scarce: the fractions of white dwarfs that are born helium-rich and that experience the DO-to-DA transformation are poorly constrained. We tackle this issue by performing a detailed model-atmosphere investigation of 1806 hot ($T_{rm eff} ge 30,000$ K) white dwarfs observed spectroscopically by the Sloan Digital Sky Survey. We first introduce our new generations of model atmospheres and theoretical cooling tracks, both appropriate for hot white dwarfs. We then present our spectroscopic analysis, from which we determine the atmospheric and stellar parameters of our sample objects. We find that $sim$24% of white dwarfs begin their degenerate life as DO stars, among which $sim$2/3 later become DA stars. We also infer that the DO-to-DA transition occurs at substantially different temperatures ($75,000 {rm K} > T_{rm eff} > 30,000$ K) for different objects, implying a broad range of hydrogen content within the DO population. Furthermore, we identify 127 hybrid white dwarfs, including 31 showing evidence of chemical stratification, and we discuss how these stars fit in our understanding of the spectral evolution. Finally, we uncover significant problems in the spectroscopic mass scale of very hot ($T_{rm eff} > 60,000$ K) white dwarfs.
We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50% the number of massive white dwarfs (M > 0.75 Msun) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.
62 - D. Hoyer , T. Rauch. , K. Werner 2018
The metal abundances in the atmospheres of hot white dwarfs (WDs) entering the cooling sequence are determined by the preceding Asymptotic Giant Branch (AGB) evolutionary phase and, subsequently, by the onset of gravitational settling and radiative levitation. In this paper, we investigate three hot He-rich WDs, which are believed to result from a late He-shell flash. During such a flash, the He-rich intershell matter is dredged up and dominates the surface chemistry. Hence, in contrast to the usual H-rich WDs, their spectra allow direct access to s-process element abundances in the intershell that were synthesized during the AGB stage. In order to look for trans-iron group elements (atomic number Z>29), we performed a non-local thermodynamic equilibrium model atmosphere analysis of new ultraviolet spectra taken with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. One of our program stars is of PG1159 spectral type; this star, PG1707+427, has effective temperature Teff=85,000 K, and surface gravity logg=7.5. The two other stars are DO white dwarfs: WD0111+002 has Teff=58,000 K and logg=7.7, and PG0109+111 has Teff=70,000 K and logg=8.0. These stars trace the onset of element diffusion during early WD evolution. While zinc is the only trans-iron element we could detect in the PG1159 star, both DOs exhibit lines from Zn, Ga, Ge, Se; one additionally exhibits lines from Sr, Sn, Te, and I and the other from As. Generally, the trans-iron elements are very abundant in the DOs, meaning that radiative levitation must be acting. Most extreme is the almost six orders of magnitude oversolar abundance of tellurium in PG0109+111. In terms of mass fraction, it is the most abundant metal in the atmosphere. The two DOs join the hitherto unique hot DO RE0503-289, in which 14 trans-iron elements had even been identified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا