Do you want to publish a course? Click here

Dynamo-driven plasmoid formation from a current-sheet instability

139   0   0.0 ( 0 )
 Added by Fatima Ebrahimi
 Publication date 2016
  fields Physics
and research's language is English
 Authors F. Ebrahimi




Ask ChatGPT about the research

Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from 1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and 2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetic fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time a dynamo poloidal flux amplification is observed at the reconnetion site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e. a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.



rate research

Read More

A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $left({hat w}_0right)$, the characteristic rate of current sheet evolution $left(1/tauright)$, and the Lundquist number $left(Sright)$. They are not simple power laws, and are proportional to $S^{alpha} tau^{beta} left[ln f(S,tau,{hat w}_0)right]^sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the primary m = 1 island, the X-point develops into a secondary elongated current sheet that eventually breaks into plasmoids. Two distinctive viscous regimes are found for the plasmoid formation and saturation. In the low viscosity regime (i.e. P r . 1), the plasmoid width increases sharply with viscosity, whereas in the viscosity dominant regime (i.e. P r & 1 ), the plasmoid size gradually decreases with viscosity. Such a finding quantifies the role of viscosity in modulating the plasmoid formation process through its effects on the plasma flow and the reconnection itself.
Magnetohydrodynamic turbulence and magnetic reconnection are ubiquitous in astrophysical environments. In most situations, these processes do not occur in isolation, but interact with each other. This renders a comprehensive theory of these processes highly challenging. Here, we propose a theory of magnetohydrodynamic turbulence driven at large scale that self-consistently accounts for the mutual interplay with magnetic reconnection occurring at smaller scales. Magnetic reconnection produces plasmoids that grow from turbulence-generated noise and eventually disrupt the sheet-like structures in which they are born. The disruption of these structures leads to a modification of the turbulent energy cascade, which, in turn, exerts a feedback effect on the plasmoid formation via the turbulence-generated noise. The energy spectrum in this plasmoid-mediated range steepens relative to the standard inertial range and does not follow a simple power law. As a result of the complex interplay between turbulence and reconnection, we also find that the length scale which marks the beginning of the plasmoid-mediated range and the dissipation length scale do not obey true power laws. The transitional magnetic Reynolds number above which the plasmoid formation becomes statistically significant enough to affect the turbulent cascade is fairly modest, implying that plasmoids are expected to modify the turbulent path to dissipation in many astrophysical systems.
We report on the first experimental observation of a current-driven instability developing in a quasi-neutral matter-antimatter beam. Strong magnetic fields ($geq$ 1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma.The experimentally determined equipartition parameter of $epsilon_B approx 10^{-3}$, is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by Particle-In-Cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
108 - N. F. Loureiro 2007
Current sheets formed in magnetic reconnection events are found to be unstable to high-wavenumber perturbations. The instability is very fast: its maximum growth rate scales as S^{1/4} v_A/L, where L is the length of the sheet, v_A the Alfven speed and S the Lundquist number. As a result, a chain of plasmoids (secondary islands) is formed, whose number scales as S^{3/8}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا