Do you want to publish a course? Click here

BehavioCog: An Observation Resistant Authentication Scheme

376   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We propose that by integrating behavioural biometric gestures---such as drawing figures on a touch screen---with challenge-response based cognitive authentication schemes, we can benefit from the properties of both. On the one hand, we can improve the usability of existing cognitive schemes by significantly reducing the number of challenge-response rounds by (partially) relying on the hardness of mimicking carefully designed behavioural biometric gestures. On the other hand, the observation resistant property of cognitive schemes provides an extra layer of protection for behavioural biometrics; an attacker is unsure if a failed impersonation is due to a biometric failure or a wrong response to the challenge. We design and develop an instantiation of such a hybrid scheme, and call it BehavioCog. To provide security close to a 4-digit PIN---one in 10,000 chance to impersonate---we only need two challenge-response rounds, which can be completed in less than 38 seconds on average (as estimated in our user study), with the advantage that unlike PINs or passwords, the scheme is secure under observation.



rate research

Read More

We present True2F, a system for second-factor authentication that provides the benefits of conventional authentication tokens in the face of phishing and software compromise, while also providing strong protection against token faults and backdoors. To do so, we develop new lightweight two-party protocols for generating cryptographic keys and ECDSA signatures, and we implement new privacy defenses to prevent cross-origin token-fingerprinting attacks. To facilitate real-world deployment, our system is backwards-compatible with todays U2F-enabled web services and runs on commodity hardware tokens after a firmware modification. A True2F-protected authentication takes just 57ms to complete on the token, compared with 23ms for unprotected U2F.
Shoulder-surfing is a known risk where an attacker can capture a password by direct observation or by recording the authentication session. Due to the visual interface, this problem has become exacerbated in graphical passwords. There have been some graphical schemes resistant or immune to shoulder-surfing, but they have significant usability drawbacks, usually in the time and effort to log in. In this paper, we propose and evaluate a new shoulder-surfing resistant scheme which has a desirable usability for PDAs. Our inspiration comes from the drawing input method in DAS and the association mnemonics in Story for sequence retrieval. The new scheme requires users to draw a curve across their password images orderly rather than click directly on them. The drawing input trick along with the complementary measures, such as erasing the drawing trace, displaying degraded images, and starting and ending with randomly designated images provide a good resistance to shouldersurfing. A preliminary user study showed that users were able to enter their passwords accurately and to remember them over time.
Telecare medical information systems (TMIS) aim to provide healthcare services remotely. Efficient and secure mechanism for authentication and key agreement is required in order to guarantee the security and privacy of patients in TMIS.
-Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. In this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy.
In this paper we proposed an authentication technique based on the user cards, to improve the authentication process in systems that allows remote access for the users, and raise the security rate during an exchange of their messages. in this technique the server performs two functions, the first function, register the users, and give him user ID, PIN code, and user private card contains secrecy information, which is used to encrypt user messages by using two kinds of encryption symmetric using RC4-Pr and asymmetric using RSA encryption., the second function, distribute the users public card if the user demand that, in which the user sends the own authentication code with their own user ID and recipient user ID to the authentication check, and then the server sends the user public card to the recipient user, thus the sender user can send the messages to recipient user without back to the server again. We attained confidentiality using RC4-Pr and RSA encryption and message authentication, user signature, and mutual secret key by using RSA encryption. in this paper we also implement the proposal in [1] RC4-pr algorithm which is modified to improve the key weakness of basic RC4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا