No Arabic abstract
It is simply anticipated that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion-loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass.Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin $s_z=-1,0,+1$) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest-Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the fate of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin $s_z=0$ starts to develop, reach a peak, to be vanishing at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for $s_z=-1,+1$ monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau-level truncation is also addressed.
Properties of $rho$-meson in symmetric nuclear matter are investigated in a light-front constituent quark model (LFCQM), using the in-medium inputs calculated by the quark-meson coupling (QMC) model. The LFCQM used in this study was already applied for the studies of the electromagnetic properties of $rho$-meson in vacuum, namely, the charge~$G_0$, magnetic~$G_1$, and quadrupole~$G_2$ form factors, electromagnetic charge radius, and electromagnetic decay constant. We predict that the electromagnetic decay constant, charge radius, and quadrupole moment are enhanced as increasing the nuclear matter density, while the magnetic moment is slightly quenched. Furthermore, we predict that the value $Q^2_{rm zero}$, which crosses zero of the charge form factor, $G_0(Q^2_{rm zero})=0$ ($Q^2 = -q^2 > 0$ with $q$ being the four-momentum transfer), decreases as increasing the nuclear matter density.
A detailed study of the analytic structure of 1-loop self energy graphs for neutral and charged $rho$ mesons is presented at finite temperature and arbitrary magnetic field using the real time formalism of thermal field theory. The imaginary part of the self energy is obtained from the discontinuities of these graphs across the Unitary and Landau cuts, which is seen to be different for $rho^0$ and $rho^pm$. The magnetic field dependent vacuum contribution to the real part of the self energy, which is usually ignored, is found to be appreciable. A significant effect of temperature and magnetic field is seen in the self energy, spectral function, effective mass and dispersion relation of $rho^0$ as well as of $rho^pm$ relative to its trivial Landau shift. However, for charged $rho$ mesons, on account of the dominance of the Landau term, the effective mass appears to be independent of temperature. The trivial coupling of magnetic moment of $rho^pm$ with external magnetic field, when incorporated in the calculation, makes the $rho^pm$ to condense at high magnetic field.
We present a calculation of the electromagnetic form factors of the $rho^+$ meson. Our formalism is based on the point-form of relativistic quantum mechanics. Electron-$rho$-meson scattering is formulated as a coupled-channel problem for a Bakamjian-Thomas mass operator, such that the dynamics of the exchanged photon is taken explicitly into account. The $rho$-meson current is extracted from on-shell matrix elements of the optical potential of the scattering process. As a consequence of the violation of cluster separability in the Bakamjian-Thomas framework, our current includes additional, unphysical contributions, which can be separated from the physical ones uniquely. Our results for the form factors are in good agreement with other approaches.
We determine the magnetic dipole moment of the rho meson using preliminary data from the BaBar Collaboration for the $e^+ e^- to pi^+ pi^- 2 pi^0$ process, in the center of mass energy range from 0.9 to 2.2 GeV. We describe the $gamma^* to 4pi$ vertex using a vector meson dominance model, including the intermediate resonance contributions relevant at these energies. We find that $mu_rho = 2.1 pm 0.5$ in $e/2 m_rho$ units.
We find a general expression for the one-loop self-energy function of neutral $rho$-meson due to $pi^+pi^-$ intermediate state in a background magnetic field, valid for arbitrary magnitudes of the field. The pion propagator used in this expression is given by Schwinger, which depends on a proper-time parameter. Restricting to weak fields, we calculate the decay rate $Gamma(rho^0 rightarrow pi^+ +pi^-)$, which changes negligibly from the vacuum value.