Do you want to publish a course? Click here

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

112   0   0.0 ( 0 )
 Added by Darko Veberic
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_CM = 110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 +- 0.16 (1.61 +- 0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.



rate research

Read More

55 - Sofia Andringa 2017
The Pierre Auger Observatory is a hybrid detector for cosmic rays with E > 1EeV. From the gathered data we estimated the proton-proton cross-section at sqrt(s) = 55 TeV and tested other features of the hadronic interaction models, which use extrapolations from the LHC energy. The electromagnetic component, carrying most of the energy of the shower, is precisely measured using fluorescence telescopes, while the hadronic back- bone of the shower is indirectly tested by measuring the muons arriving to the surface detector. The analyses show that models fail to describe these two components consistently, predicting too few muons at the ground.
76 - David Schmidt 2021
The characteristics of an extensive air shower derive from both the mass of the primary ultra-high-energy cosmic ray that seeds its development and the properties of the hadronic interactions that feed it. With its hybrid detector design, the Pierre Auger Observatory measures both the longitudinal development of showers in the atmosphere and the lateral distribution of particles arriving at the ground, from which a number of parameters are calculated and compared with predictions from current hadronic interaction models tuned to LHC data. At present, a tension exists concerning the production of muons, in that the measured abundance exceeds all predictions. This discrepancy, measured up to center-of-mass energies of $sim$ 140 TeV, is irresolvable through mass composition arguments, constrained by measurements of the depth of the electromagnetic-shower maximum. Here, we discuss a compilation of hadronically-sensitive shower observables and their comparisons with model predictions and conclude with a brief discussion of what measurements with the new detectors of the AugerPrime upgrade will bring to the table.
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا