No Arabic abstract
The empirical correlation between the mass of a super-massive black hole (MBH) and its host galaxy properties is widely considered to be evidence of their co-evolution. A powerful way to test the co-evolution scenario and learn about the feedback processes linking galaxies and nuclear activity is to measure these correlations as a function of redshift. Unfortunately, currently MBH can only be estimated in active galaxies at cosmological distances. At these distances, bright active galactic nuclei (AGN) can outshine the host galaxy, making it extremely difficult to measure the hosts luminosity. Strongly lensed AGNs provide in principle a great opportunity to improve the sensitivity and accuracy of the host galaxy luminosity measurements as the host galaxy is magnified and more easily separated from the point source, provided the lens model is sufficiently accurate. In order to measure the MBH-L correlation with strong lensing, it is necessary to ensure that the lens modelling is accurate, and that the host galaxy luminosity can be recovered to at least a precision and accuracy better than that of the typical MBH measurement. We carry out extensive and realistic simulations of deep Hubble Space Telescope observations of lensed AGNs obtained by our collaboration. We show that the host galaxy luminosity can be recovered with better accuracy and precision than the typical uncertainty on MBH(~ 0.5 dex) for hosts as faint as 2-4 magnitudes dimmer than the AGN itself. Our simulations will be used to estimate bias and uncertainties on the actual measurements to be presented in a future paper.
Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes ($mathcal M_{BH}$) and their host galaxy luminosity ($L_{host}$). We demonstrate the power of lensing by analyzing two systems for which state-of-the-art lens modelling techniques have been applied to Hubble Space Telescope imaging data. We use i) the reconstructed images to infer the total and bulge luminosity of the host and ii) published broad-line spectroscopy to estimate $mathcal M_{BH}$ using the so-called virial method. We then enlarge our sample with new calibration of previously published measurements to study the evolution of the correlation out to z~4.5. Consistent with previous work, we find that without taking into account passive luminosity evolution, the data points lie on the local relation. Once passive luminosity evolution is taken into account, we find that BHs in the more distant Universe reside in less luminous galaxies than today. Fitting this offset as $mathcal M_{BH}$/$L_{host}$ $propto$ (1+z)$^{gamma}$, and taking into account selection effects, we obtain $gamma$ = 0.6 $pm$ 0.1 and 0.8$pm$ 0.1 for the case of $mathcal M_{BH}$-$L_{bulge}$ and $mathcal M_{BH}$-$L_{total}$, respectively. To test for systematic uncertainties and selection effects we also consider a reduced sample that is homogeneous in data quality. We find consistent results but with considerably larger uncertainty due to the more limited sample size and redshift coverage ($gamma$ = 0.7 $pm$ 0.4 and 0.2$pm$ 0.5 for $mathcal M_{BH}$-$L_{bulge}$ and $mathcal M_{BH}$-$L_{total}$, respectively), highlighting the need to gather more high-quality data for high-redshift lensed quasar hosts. Our result is consistent with a scenario where the growth of the black hole predates that of the host galaxy.
We report the detection of extended Lyman-$alpha$ emission from the host galaxy of SDSS~J2222+2745, a strongly lensed quasar at $z = 2.8$. Spectroscopic follow-up clearly reveals extended Lyman-$alpha$ in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging, and resolve spatial scales as small as $sim$200 parsecs. In the source plane we recover the host galaxy morphology to within a few hundred parsecs of the central AGN, and map the extended Lyman-$alpha$ emission to its physical origin on one side of the host galaxy at radii $sim$0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyman-$alpha$ and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyman-$alpha$, host galaxy Lyman-$alpha$, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.
We report the detection of CO(J=3-2) line emission in the strongly-lensed submillimeter galaxy (SMG) SMM J0939+8315 at z=2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z=0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of S_cont = 7.4 +/- 1.4 mJy. Using the CO(J=3-2) line intensity of I_(CO(3-2)) = (12.6 +/- 2.0) Jy km s^-1, we derive a lensing- and excitation-corrected CO line luminosity of L(CO(3-2)) = (3.4 +/- 0.7) x 10^10 (10.1/mu_L) K km s^-1 pc^2 for the SMG, where mu_L is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of M_gas = (2.7 +/- 0.6) x 10^10 (10.1/mu_L) Msun. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1^{+1.1}_{-1.3} K, a dust mass of M_dust = (5.2 +/- 2.1) x 10^8 (10.1/mu_L) Msun, and a total infrared luminosity of L_IR = (9.1 +/- 1.2) x 10^12 (10.1/mu_L) Lsun. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a star-bursting phase to an unobscured quasar phase as described by the evolutionary link model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.
A significant minority of high redshift radio galaxy (HzRG) candidates show extremely red broad band colours and remain undetected in emission lines after optical `discovery spectroscopy. In this paper we present deep GTC optical imaging and spectroscopy of one such radio galaxy, 5C 7.245, with the aim of better understanding the nature of these enigmatic objects. Our g-band image shows no significant emission coincident with the stellar emission of the host galaxy, but does reveal faint emission offset by ~3 (26 kpc) therefrom along a similar position angle to that of the radio jets, reminiscent of the `alignment effect often seen in the optically luminous HzRGs. This offset g-band source is also detected in several UV emission lines, giving it a redshift of 1.609, with emission line flux ratios inconsistent with photoionization by young stars or an AGN, but consistent with ionization by fast shocks. Based on its unusual gas geometry, we argue that in 5C 7.245 we are witnessing a rare (or rarely observed) phase in the evolution of quasar hosts when stellar mass assembly, accretion onto the back hole, and powerful feedback activity has eradicated its cold gas from the central ~20 kpc, but is still in the process of cleansing cold gas from its extended halo.
A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, with strong gravitational lensing exposing details in the lensed background galaxies that would otherwise be undetectable. The MACS J0416.1-2403 cluster (hereafter MACS0416) is one of the most efficient lenses in the sky, and in 2014 it was observed with high-cadence imaging from the Hubble Space Telescope (HST). Here we describe two unusual transient events that appeared behind MACS0416 in a strongly lensed galaxy at redshift $z = 1.0054 pm 0.0002$. These transients---designated HFF14Spo-NW and HFF14Spo-SE and collectively nicknamed Spock---were faster and fainter than any supernova (SN), but significantly more luminous than a classical nova. They reached peak luminosities of $sim10^{41}$ erg s$^{-1}$ ($M_{rm AB} < -14$ mag) in 5 rest-frame days, then faded below detectability in roughly the same time span. Models of the cluster lens suggest that these events may be spatially coincident at the source plane, but are most likely not temporally coincident. We find that HFF14Spo can be explained as a luminous blue variable (LBV), a recurrent nova (RN), or a pair of stellar microlensing events. To distinguish between these hypotheses will require a clarification of the positions of nearby critical curves, along with high-cadence monitoring of the field that could detect new transient episodes in the host galaxy.