No Arabic abstract
We present a physics-based compact model for two-dimensional (2D) field-effect transistors (FETs) based on monolayer semiconductors such as MoS2. A semi-classical transport approach is appropriate for the 2D channel, enabling simplified analytical expressions for the drain current. In addition to intrinsic FET behavior, the model includes contact resistance, traps and impurities, quantum capacitance, fringing fields, high-field velocity saturation and self-heating, the latter being found to play a strong role. The model is calibrated with state-of-the-art experimental data for n- and p-type 2D-FETs, and it can be used to analyze device properties for sub-100 nm gate lengths. Using the experimental fit, we demonstrate feasibility of circuit simulations using properly scaled devices. The complete model is implemented in SPICE-compatible Verilog-A, and a downloadable version is freely available on the nanoHUB.org.
Spin-orbit torques (SOTs), which rely on spin current generation from charge current in a nonmagnetic material, promise an energy-efficient scheme for manipulating magnetization in magnetic devices. A critical topic for spintronic devices using SOTs is to enhance the charge to spin conversion efficiency. Besides, the current-induced spin polarization is usually limited to in-plane, whereas out-of-plane spin polarization could be favored for efficient perpendicular magnetization switching. Recent advances in utilizing two important classes of van der Waals materials$-$topological insulators and transition-metal dichalcogenides$-$as spin sources to generate SOT shed light on addressing these challenges. Topological insulators such as bismuth selenide have shown a giant SOT efficiency, which is larger than those from three-dimensional heavy metals by at least one order of magnitude. Transition-metal dichalcogenides such as tungsten telluride have shown a current-induced out-of-plane spin polarization, which is allowed by the reduced symmetry. In this review, we use symmetry arguments to predict and analyze SOTs in van der Waal material-based heterostructures. We summarize the recent progress of SOT studies based on topological insulators and transition-metal dichalcogenides and show how these results are in line with the symmetry arguments. At last, we identify unsolved issues in the current studies and suggest three potential research directions in this field.
We have investigated the electronic properties of a C_60 molecule in between carbon nanotube leads. This problem has been tackled within a quantum chemical treatment utilizing a density functional theory-based LCAO approach combined with the Landauer formalism. Owing to low-dimensionality, electron transport is very sensitive to the strength and geometry of interfacial bonds. Molecular contact between interfacial atoms and electrodes gives rise to a complex conductance dependence on the electron energy exhibiting spectral features of both the molecule and electrodes. These are attributed to the electronic structure of the C_60 molecule and to the local density of states of the leads, respectively.
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor - molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Importantly, our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric field, a unique property of few layer graphene systems. Here we discuss technological details that are important for the fabrication of top gated structures, based on electron-gun evaporation of SiO$_2$. We perform a statistical study that demonstrates how --contrary to expectations-- the breakdown field of electron-gun evaporated thin SiO$_2$ films is comparable to that of thermally grown oxide layers. We find that a high breakdown field can be achieved in evaporated SiO$_2$ only if the oxide deposition is directly followed by the metallization of the top electrodes, without exposure to air of the SiO$_2$ layer.
We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance is quantitatively the same for single-, bi-, and tri-layer graphene ($sim800 pm 200 Omega mu m$), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point.