The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives based on series approximations to the nonparametric part of the model. It also provides pointwise and uniform confidence intervals over a region of covariate values and/or quantile indices for the same functions using analytical and resampling methods. This paper serves as an introduction to the package and displays basic functionality of the functions contained within.
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg (Chiou and Huang 2021) offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, possibly with the presence of an informative terminal event. The regression framework is a general scale-change model which encompasses the popular Cox-type model, the accelerated rate model, and the accelerated mean model as special cases. Informative censoring is accommodated through a subject-specific frailty without no need for parametric specification. Different regression models are allowed for the recurrent event process and the terminal event. Also included are visualization and simulation tools.
Pooled testing (also known as group testing), where diagnostic tests are performed on pooled samples, has broad applications in the surveillance of diseases in animals and humans. An increasingly common use case is molecular xenomonitoring (MX), where surveillance of vector-borne diseases is conducted by capturing and testing large numbers of vectors (e.g. mosquitoes). The R package PoolTestR was developed to meet the needs of increasingly large and complex molecular xenomonitoring surveys but can be applied to analyse any data involving pooled testing. PoolTestR includes simple and flexible tools to estimate prevalence and fit fixed- and mixed-effect generalised linear models for pooled data in frequentist and Bayesian frameworks. Mixed-effect models allow users to account for the hierarchical sampling designs that are often employed in surveys, including MX. We demonstrate the utility of PoolTestR by applying it to a large synthetic dataset that emulates a MX survey with a hierarchical sampling design.
We introduce and illustrate through numerical examples the R package texttt{SIHR} which handles the statistical inference for (1) linear and quadratic functionals in the high-dimensional linear regression and (2) linear functional in the high-dimensional logistic regression. The focus of the proposed algorithms is on the point estimation, confidence interval construction and hypothesis testing. The inference methods are extended to multiple regression models. We include real data applications to demonstrate the packages performance and practicality.
Process data refer to data recorded in the log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents response processes of solving the items. Process data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by utilizing the rich information contained in response processes. The R package ProcData presented in this article is designed to provide tools for processing, describing, and analyzing process data. We define an S3 class proc for organizing process data and extend generic methods summary and print for class proc. Two feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors. ProcData also provides functions for fitting and making predictions from a neural-network-based sequence model. These functions call relevant functions in package keras for constructing and training neural networks. In addition, several response process generators and a real dataset of response processes of the climate control item in the 2012 Programme for International Student Assessment are included in the package.
R is a programming language and environment that is a central tool in the applied sciences for writing program. Its impact on the development of modern statistics is inevitable. Current research, especially for big data may not be done solely using R and will likely use different programming languages; hence, having a modern integrated development environment (IDE) is very important. Atom editor is modern IDE that is developed by GitHub, it is described as A hackable text editor for the 21st Century. This report is intended to present a package deployed entitled Rbox that allows Atom Editor to write and run codes professionally in R.
Michael Lipsitz
,Alexandre Belloni
,Victor Chernozhukov
.
(2016)
.
"quantreg.nonpar: An R Package for Performing Nonparametric Series Quantile Regression"
.
Ivan Fernandez-Val
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا