A uniform estimate for rate functions in large deviations


Abstract in English

Given Holder continuous functions $f$ and $psi$ on a sub-shift of finite type $Sigma_A^{+}$ such that $psi$ is not cohomologous to a constant, the classical large deviation principle holds (cite{OP}, cite{Kif}, cite{Y}) with a rate function $I_psigeq 0$ such that $I_psi (p) = 0$ iff $p = int psi , d mu$, where $mu = mu_f$ is the equilibrium state of $f$. In this paper we derive a uniform estimate from below for $I_psi$ for $p$ outside an interval containing $tilde{psi} = int psi , dmu$, which depends only on the sub-shift, the function $f$, the norm $|psi|_infty$, the Holder constant of $psi$ and the integral $tilde{psi}$. Similar results can be derived in the same way e.g. for Axiom A diffeomorphisms on basic sets.

Download