Do you want to publish a course? Click here

Memshare: a Dynamic Multi-tenant Memory Key-value Cache

74   0   0.0 ( 0 )
 Added by Asaf Cidon
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Web application performance is heavily reliant on the hit rate of memory-based caches. Current DRAM-based web caches statically partition their memory across multiple applications sharing the cache. This causes under utilization of memory which negatively impacts cache hit rates. We present Memshare, a novel web memory cache that dynamically manages memory across applications. Memshare provides a resource sharing model that guarantees private memory to different applications while dynamically allocating the remaining shared memory to optimize overall hit rate. Todays high cost of DRAM storage and the availability of high performance CPU and memory bandwidth, make web caches memory capacity bound. Memshares log-structured design allows it to provide significantly higher hit rates and dynamically partition memory among applications at the expense of increased CPU and memory bandwidth consumption. In addition, Memshare allows applications to use their own eviction policy for their objects, independent of other applications. We implemented Memshare and ran it on a week-long trace from a commercial memcached provider. We demonstrate that Memshare increases the combined hit rate of the applications in the trace by an 6.1% (from 84.7% hit rate to 90.8% hit rate) and reduces the total number of misses by 39.7% without affecting system throughput or latency. Even for single-tenant applications, Memshare increases the average hit rate of the current state-of-the-art memory cache by an additional 2.7% on our real-world trace.



rate research

Read More

As its price per bit drops, SSD is increasingly becoming the default storage medium for cloud application databases. However, it has not become the preferred storage medium for key-value caches, even though SSD offers more than 10x lower price per bit and sufficient performance compared to DRAM. This is because key-value caches need to frequently insert, update and evict small objects. This causes excessive writes and erasures on flash storage, since flash only supports writes and erasures of large chunks of data. These excessive writes and erasures significantly shorten the lifetime of flash, rendering it impractical to use for key-value caches. We present Flashield, a hybrid key-value cache that uses DRAM as a filter to minimize writes to SSD. Flashield performs light-weight machine learning profiling to predict which objects are likely to be read frequently before getting updated; these objects, which are prime candidates to be stored on SSD, are written to SSD in large chunks sequentially. In order to efficiently utilize the caches available memory, we design a novel in-memory index for the variable-sized objects stored on flash that requires only 4 bytes per object in DRAM. We describe Flashields design and implementation and, we evaluate it on a real-world cache trace. Compared to state-of-the-art systems that suffer a write amplification of 2.5x or more, Flashield maintains a median write amplification of 0.5x without any loss of hit rate or throughput.
59 - Yuxin Ren , Vlad Nitu , Guyue Liu 2019
In the future, computing will be immersed in the world around us -- from augmented reality to autonomous vehicles to the Internet of Things. Many of these smart devices will offer services that respond in real time to their physical surroundings, requiring complex processing with strict performance guarantees. Edge clouds promise a pervasive computational infrastructure a short network hop away from end devices, but todays operating systems are a poor fit to meet the goals of scalable isolation, dense multi-tenancy, and predictable performance required by these emerging applications. In this paper we present EdgeOS, a micro-kernel based operating system that meets these goals by blending recent advances in real-time systems and network function virtualization. EdgeOS introduces a Featherweight Process model that offers lightweight isolation and supports extreme scalability even under high churn. Our architecture provides efficient communication mechanisms, and low-overhead per-client isolation. To achieve high performance networking, EdgeOS employs kernel bypass paired with the isolation properties of Featherweight Processes. We have evaluated our EdgeOS prototype for running high scale network middleboxes using the Click software router and endpoint applications using memcached. EdgeOS reduces startup latency by 170X compared to Linux processes and over five orders of magnitude compared to containers, while providing three orders of magnitude latency improvement when running 300 to 1000 edge-cloud memcached instances on one server.
Systems for processing big data---e.g., Hadoop, Spark, and massively parallel databases---need to run workloads on behalf of multiple tenants simultaneously. The abundant disk-based storage in these systems is usually complemented by a smaller, but much faster, {em cache}. Cache is a precious resource: Tenants who get to use cache can see two orders of magnitude performance improvement. Cache is also a limited and hence shared resource: Unlike a resource like a CPU core which can be used by only one tenant at a time, a cached data item can be accessed by multiple tenants at the same time. Cache, therefore, has to be shared by a multi-tenancy-aware policy across tenants, each having a unique set of priorities and workload characteristics. In this paper, we develop cache allocation strategies that speed up the overall workload while being {em fair} to each tenant. We build a novel fairness model targeted at the shared resource setting that incorporates not only the more standard concepts of Pareto-efficiency and sharing incentive, but also define envy freeness via the notion of {em core} from cooperative game theory. Our cache management platform, ROBUS, uses randomization over small time batches, and we develop a proportionally fair allocation mechanism that satisfies the core property in expectation. We show that this algorithm and related fair algorithms can be approximated to arbitrary precision in polynomial time. We evaluate these algorithms on a ROBUS prototype implemented on Spark with RDD store used as cache. Our evaluation on a synthetically generated industry-standard workload shows that our algorithms provide a speedup close to performance optimal algorithms while guaranteeing fairness across tenants.
245 - Zhuotao Liu , Kai Chen , Haitao Wu 2017
Todays cloud networks are shared among many tenants. Bandwidth guarantees and work conservation are two key properties to ensure predictable performance for tenant applications and high network utilization for providers. Despite significant efforts, very little prior work can really achieve both properties simultaneously even some of them claimed so. In this paper, we present QShare, an in-network based solution to achieve bandwidth guarantees and work conservation simultaneously. QShare leverages weighted fair queuing on commodity switches to slice network bandwidth for tenants, and solves the challenge of queue scarcity through balanced tenant placement and dynamic tenant-queue binding. QShare is readily implementable with existing switching chips. We have implemented a QShare prototype and evaluated it via both testbed experiments and simulations. Our results show that QShare ensures bandwidth guarantees while driving network utilization to over 91% even under unpredictable traffic demands.
In cloud computing, network Denial of Service (DoS) attacks are well studied and defenses have been implemented, but severe DoS attacks on a victims working memory by a single hostile VM are not well understood. Memory DoS attacks are Denial of Service (or Degradation of Service) attacks caused by contention for hardware memory resources on a cloud server. Despite the strong memory isolation techniques for virtual machines (VMs) enforced by the software virtualization layer in cloud servers, the underlying hardware memory layers are still shared by the VMs and can be exploited by a clever attacker in a hostile VM co-located on the same server as the victim VM, denying the victim the working memory he needs. We first show quantitatively the severity of contention on different memory resources. We then show that a malicious cloud customer can mount low-cost attacks to cause severe performance degradation for a Hadoop distributed application, and 38X delay in response time for an E-commerce website in the Amazon EC2 cloud. Then, we design an effective, new defense against these memory DoS attacks, using a statistical metric to detect their existence and execution throttling to mitigate the attack damage. We achieve this by a novel re-purposing of existing hardware performance counters and duty cycle modulation for security, rather than for improving performance or power consumption. We implement a full prototype on the OpenStack cloud system. Our evaluations show that this defense system can effectively defeat memory DoS attacks with negligible performance overhead.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا