Do you want to publish a course? Click here

Coherent Coupling of Remote Spin Ensembles via a Cavity Bus

70   0   0.0 ( 0 )
 Added by Thomas Astner
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report coherent coupling between two macroscopically separated nitrogen-vacancy electron spin ensembles in a cavity quantum electrodynamics system. The coherent interaction between the distant ensembles is directly detected in the cavity transmission spectrum by observing bright and dark collective multiensemble states and an increase of the coupling strength to the cavity mode. Additionally, in the dispersive limit we show transverse ensemble-ensemble coupling via virtual photons.



rate research

Read More

Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two qubit interactions and gates having been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gates between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a quantum bus, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
255 - Yueyin Qiu , Wei Xiong , Lin Tian 2014
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.
In large ensembles of identical atoms or spins, the interaction with a mode of the electromagnetic radiation field concentrates in a single superradiant degree of freedom with a collectively enhanced coupling. Given a controllable inhomogeneous broadening, such ensembles may be used for multi-mode storage of quantum states of the radiation field with applications in quantum communication networks and quantum computers. In this paper we analyze how the width and shape of the inhomogeneous broadening influence the collective enhancement and the dynamics of the cavity-ensemble system with focus on the consequences for the ensembles applicability for quantum information processing tasks.
Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin-valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the MHz range at the single spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60ns. We thereby demonstrate a mesoscopic device suitable for non-destructive spin read-out and distant spin coupling.
We describe a method to perform two qubit measurements and logic operations on pairs of qubits which each interact with a harmonic oscillator degree of freedom (the emph{bus}), but do not directly interact with one another. Our scheme uses only weak interactions between the qubit and the bus, homodyne measurements, and single qubit operations. In contrast to earlier schemes, the technique presented here is extremely robust to photon loss in the bus mode, and can function with high fidelity even when the rate of photon loss is comparable to the strength of the qubit-bus coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا