Do you want to publish a course? Click here

Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates

100   0   0.0 ( 0 )
 Added by Chandra Raman
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have experimentally investigated the quench dynamics of antiferromagnetic spinor Bose-Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic Zeeman shift $q$. The rate of instability shows good agreement with predictions based upon solutions to the Bogoliubov de-Gennes equations. A key feature of this work was removal of magnetic field inhomogeneities, resulting in a steep change in behavior near the transition point. The quadratic Zeeman shift at the transition point was resolved to 250 milliHertz uncertainty, equivalent to an energy resolution of $k_B times 12$ picoKelvin. To our knowledge, this is the first demonstration of sub-Hz precision measurement of a phase transition in quantum gases. Our results point to the use of dynamics, rather than equilibrium studies for high precision measurements of phase transitions in quantum gases.



rate research

Read More

196 - A. Vinit , C. Raman 2014
We investigate, both experimentally and theoretically, the quench dynamics of antiferromagnetic spinor Bose-Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic Zeeman shift q. Both the rate of instability and the associated finite wavevector of the unstable modes - show good agreement with predictions based upon numerical solutions to the Bogoliubov de-Gennes equations. A key feature of this work is inclusion of magnetic field inhomogeneities that smooth the phase transition. Once these were removed, we observed a dramatic sharpening of the transition point, which could then be resolved within a quadratic Zeeman shift of only 1-2 Hz. Our results point to the use of dynamics, rather than equilibrium quantities for high precision measurements of phase transitions in quantum gases.
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major challenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
75 - Xiao-Lu Yu , Boyang Liu 2021
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong-coupling regime. In the weakly interacting regime the second order perturbation theory is performed. In the strong coupling regime we use a simple variational treatment. The analytical approximations to the energy and effective mass of the polarons are constructed. Especially, a transition from the mobile state to the self-trapping state of the polaron in the strong coupling regime is discussed. We also estimate the signatures of polaron effects in spinor BEC for the future experiments.
224 - Z. F. Xu , J. W. Mei , R. Lu 2010
We study the ground state phases for a mixture of two atomic spin-1 Bose-Einstein condensates (BECs) in the presence of a weak magnetic (B-) field. The ground state is found to contain a broken-axisymmetry (BA) phase due to competitions among intra- and inter-species spin exchange interactions and the linear Zeeman shifts. This is in contrast to the case of a single species spin- 1 condensate, where the axisymmetry breaking results from competitions among the linear and quadratic Zeeman shifts and the intra-species ferromagnetic interaction. All other remaining ground state phases for the mixture are found to preserve axisymmetry. We further elaborate on the ground state phase diagram and calculate their Bogoliubov excitation spectra. For the BA phase, there exist three Goldstone modes attempting to restore the broken U(1) and SO(2) symmetries.
135 - Z. F. Xu , R. Lu , 2011
We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein condensates including quantum fluctuations. The non-commuting terms in the spin-dependent Hamiltonian under single spatial mode approximation make it difficult to obtain exact eigenstates. Utilizing the spin z-component conservation and the total spin angular momentum conservation, we numerically derive the information of the building blocks and evaluate von Neumann entropy to quantify the ground states. The mean-field phase boundaries are found to remain largely intact, yet the ground states show fragmented and entangled behaviors within large parameter spaces of interspecies spin-exchange and singlet-pairing interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا