Contextuality and negativity of the Wigner function are two notions of non-classicality for quantum systems. Howard, Wallman, Veitch and Emerson proved recently that these two notions coincide for qudits in odd prime dimension. This equivalence is particularly important since it promotes contextuality as a ressource that magic states must possess in order to allow for a quantum speed-up. We propose a simple proof of the equivalence between contextuality and negativity of the Wigner function based on character theory. This simplified approach allows us to generalize this equivalence to multiple qudits and to any qudit system of odd local dimension.
We describe a scheme of quantum computation with magic states on qubits for which contextuality is a necessary resource possessed by the magic states. More generally, we establish contextuality as a necessary resource for all schemes of quantum computation with magic states on qubits that satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
We describe a universal scheme of quantum computation by state injection on rebits (states with real density matrices). For this scheme, we establish contextuality and Wigner function negativity as computational resources, extending results of [M. Howard et al., Nature 510, 351--355 (2014)] to two-level systems. For this purpose, we define a Wigner function suited to systems of $n$ rebits, and prove a corresponding discrete Hudsons theorem. We introduce contextuality witnesses for rebit states, and discuss the compatibility of our result with state-independent contextuality.
A measure of nonclassicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyze this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wave packets.
The characterization of quantum features in large Hilbert spaces is a crucial requirement for testing quantum protocols. In the continuous variables encoding, quantum homodyne tomography requires an amount of measurements that increases exponentially with the number of involved modes, which practically makes the protocol intractable even with few modes. Here we introduce a new technique, based on a machine learning protocol with artificial Neural Networks, that allows to directly detect negativity of the Wigner function for multimode quantum states. We test the procedure on a whole class of numerically simulated multimode quantum states for which the Wigner function is known analytically. We demonstrate that the method is fast, accurate and more robust than conventional methods when limited amounts of data are available. Moreover the method is applied to an experimental multimode quantum state, for which an additional test of resilience to losses is carried out.
We derive sampling functions for estimation of quantum state fidelity with Schrodinger cat-like states, which are defined as superpositions of two coherent states with opposite amplitudes. We also provide sampling functions for fidelity with squeezed Fock states that can approximate the cat-like states and can be generated from Gaussian squeezed states by conditional photon subtraction. The fidelities can be determined by averaging the sampling functions over quadrature statistics measured by homodyne detection. The sampling functions are designed such that they can compensate for losses and inefficient homodyning provided that the overall efficiency exceeds certain threshold. The fidelity with an odd coherent state and the fidelity with a squeezed odd Fock state provide convenient witnesses of negativity of Wigner function of the measured state. The negativity of Wigner function at the origin of phase space is certified if any of these fidelities exceeds 0.5. Finally, we discuss the possibility of reducing the statistical uncertainty of the fidelity estimates by a suitable choice of the dependence of the number of quadrature samples on the relative phase shift between local oscillator and signal beam.
Nicolas Delfosse
,Cihan Okay
,Juan Bermejo-Vega
.
(2016)
.
"Equivalence between contextuality and negativity of the Wigner function for qudits"
.
Nicolas Delfosse
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا