Do you want to publish a course? Click here

Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

114   0   0.0 ( 0 )
 Added by Fumi Egusa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near infrared images, while the gas mass distribution is obtained by high-resolution CO and HI data. For the inner region (r < 150), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms are different, which is likely due to an interaction with the companion galaxy.



rate research

Read More

(Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from $200pc$ to several $kpc$. Interferometric and single dish data are combined to obtain new maps at wwav{3}{6} in total and polarized emission, and earlier wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, $m=0+2$, but in the halo only an $m=1$ mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii $r>2kpc$ where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of $50pc$ for the size of the turbulent eddies.
Context: Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered driven merely by young stars and, consequently, often applied to trace the star formation rate in galaxies. Recent studies have argued that the old stellar population might anticipate a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (< 100 Myr) and old (~ 10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT accounting for the absorption, scattering and non-local thermal equilibrium (NLTE) emission of dust in M51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 {mu}m, GALEX FUV, H{alpha} and MIPS 24 {mu}m wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation and infrared SED. (abridged)
225 - Daisuke Kawata 2014
We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outward (inward), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outward (inward) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al. (2014), and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V_LSR, with the APOGEE data at l = 90 deg as an example.
81 - Peeter Tenjes 2017
Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from HI, CO and cold dust) in the spiral arms of M31, to calculate stability conditions in the galaxy disc and to draw conclusions about possible star formation triggering mechanisms. Methods: We select fourteen spiral arm segments from the de-projected data maps and compare emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre we calculate the effective disc stability parameters and the least stable wavelengths at different distances. For this we utilise a mass distribution model of M31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a minimal value Q_{eff} ~ 1.8 at galactocentric distances 12 - 13 kpc. The least stable wavelengths are rather long, with the minimal values starting from ~ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M31. Instead, external causes should be considered, e.g. interactions with massive gas clouds or dwarf companions of M31.
We present the first complete, velocity-resolved [CII] 158um image of the M51 grand-design spiral galaxy, observed with the upGREAT instrument on SOFIA. [CII] is an important tracer of various phases of the interstellar medium (ISM), including ionized gas, neutral atomic, and diffuse molecular regions. We combine the [CII] data with HI, CO, 24um dust continuum, FUV, and near-infrared K-band observations to study the evolution of the ISM across M51s spiral arms in both position-position, and position-velocity space. Our data show strong velocity gradients in HI, 12CO, and [CII] at the locations of stellar arms (traced by K--band data) with a clear offset in position-velocity space between upstream molecular gas (traced by 12CO) and downstream star formation (traced by [CII]). We compare the observed position--velocity maps across spiral arms with synthetic observations from numerical simulations of galaxies with both dynamical and quasi-stationary steady spiral arms that predict both tangential and radial velocities at the location of spiral arms. We find that our observations, based on the observed velocity gradients and associated offset between CO and [CII], are consistent with the presence of shocks in spiral arms in the inner parts of M51 and in the arm connecting the companion galaxy, M51b, in the outer parts of M51.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا