Structure and Physical Conditions in the Huygens Region of the Orion Nebula


Abstract in English

HST images, MUSE maps of emission-lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the firrst time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photo-evaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star Theta1 Ori C. The product of these characteristics (NexTe) is the most relevant parameter in modeling a blister-type nebula like the Huygens Region, where this quantity should vary with the surface brightness in Halpha. Several lines of evidence indicate that small-scale structure and turbulence exists down to the level of our resolution of a few arcseconds. Although photo-evaporative ow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicate that it is not the major additive broad- ening component. Derivation of Te values for H+ from radio+optical and optical-only ionized hydro- gen emission showed that this temperature is close to that derived from [Nii] and that the transition from the well-known at extinction curve that applies in the Huygens Region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.

Download