Do you want to publish a course? Click here

Barrier-top resonances for non globally analytic potentials

63   0   0.0 ( 0 )
 Added by Jean-Francois Bony
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give the semiclassical asymptotic of barrier-top resonances for Schr{o}dinger operators on ${mathbb R}^{n}$, $n geq 1$, whose potential is $C^{infty}$ everywhere and analytic at infinity. In the globally analytic setting, this has already been obtained. Our proof is based on a propagation of singularities theorem at a hyperbolic fixed point that we establish here. This last result refines a theorem of the same authors, and its proof follows another approach.



rate research

Read More

We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of the resonances when there is a finite number of homoclinic trajectories. The same kind of results is proved for homoclinic sets of maximal dimension. Next, we generalize to the case of homoclinic/heteroclinic trajectories and we study the three bump case. In all these settings, the resonances may either accumulate on curves or form clouds. We also describe the corresponding resonant states.
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturbations of the initial data. The key ingredient is the introduction of a novel coordinate system that allows one to track the evolution past the blowup time and almost up to the Cauchy horizon of the singularity. As a consequence, we also obtain a result on continuation beyond blowup.
We investigate plasmon resonances for curved nanorods which present anisotropic geometries. We analyze quantitative properties of the plasmon resonance and its relationship to the metamaterial configurations and the anisotropic geometries of the nanorods. Based on delicate and subtle asymptotic and spectral analysis of the layer potential operators, particularly the Neumann-Poincare operators, associated with anisotropic geometries, we derive sharp asymptotic formulae of the corresponding scattering field in the quasi-static regime. By carefully analyzing the asymptotic formulae, we establish sharp conditions that can ensure the occurrence of the plasmonic resonance. The resonance conditions couple the metamaterial parameters, the wave frequency and the nanorod geometry in an intricate but elegant manner. We provide thorough resonance analysis by studying the wave fields both inside and outside the nanorod. Furthermore, our quantitative analysis indicates that different parts of the nanorod induce varying degrees of resonance. Specifically, the resonant strength at the two end-parts of the curved nanorod is more outstanding than that of the facade-part of the nanorod. This paper presents the first theoretical study on plasmon resonances for nanostructures within anisotropic geometries.
In this article we study the linearized anisotropic Calderon problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calderon problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the transversal manifold, with exponentially small errors, as well as the FBI transform characterization of the analytic wave front set.
We investigate the influence of an electric field on trapped modes arising in a two-dimensional curved quantum waveguide ${bf Omega}$ i.e. bound states of the corresponding Laplace operator $-Delta_{{bf Omega}}$. Here the curvature of the guide is supposed to satisfy some assumptions of analyticity, and decays as $O(|s|^{-varepsilon}), varepsilon > 3$ at infinity. We show that under conditions on the electric field $ bf F$, ${bf H}(F):= -Delta_{{bf Omega}} + {bf F}. {bf x} $ has resonances near the discrete eigenvalues of $-Delta_{{bf Omega}}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا