Lattice effects on nematic quantum criticality in metals


Abstract in English

Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic excitations become incoherent on the entire `hot Fermi surface, triggering non Fermi liquid behavior. However, such conclusions are based on electron-only theories, ignoring a symmetry-allowed coupling between the electronic nematic variable and a suitable crystalline lattice strain. Here we show that including this coupling leads to entirely different conclusions because the critical fluctuations are mostly cutoff by the non-critical lattice shear modes. At sufficiently low temperatures the thermodynamics remain Fermi liquid type, while, depending on the Fermi surface geometry, either the entire Fermi surface stays cold, or at most there are hot spots. In particular, our predictions are relevant for the iron-based superconductors.

Download