Do you want to publish a course? Click here

Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

69   0   0.0 ( 0 )
 Added by Igor Zaliznyak
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.



rate research

Read More

Polarized neutron scattering experiments were performed on mixed compound CeRh0.6Co0.4In5 to clarify the nature of the low-temperature ordered states. Three nonequivalent Bragg peaks, characterized by the wave vectors of q_h ~ (1/2,1/2,0.3), q_1 ~ (1/2,1/2,0.4) and q_c=(1/2,1/2,1/2), were observed at 1.4 K. These Bragg peaks are found to occur entirely in spin-flip channel. This indicates that these Bragg peaks originate from the magnetic scattering, i.e., the antiferromagnetic orders with three different modulations appear in this compound.
We report spin-polarized inelastic neutron scattering of the dynamical structure factor of the conical magnetic helix in the cubic chiral magnet MnSi. We find that the spectral weight of spin-flip scattering processes is concentrated on single branches for wavevector transfer parallel to the helix axis as inferred from well-defined peaks in the neutron spectra. In contrast, for wavevector transfers perpendicular to the helix the spectral weight is distributed among different branches of the magnon band structure as reflected in broader features of the spectra. Taking into account the effects of instrumental resolution, our experimental results are in excellent quantitative agreement with parameter-free theoretical predictions. Whereas the dispersion of the spin waves in MnSi appears to be approximately reciprocal at low energies and small applied fields, the associated spin-resolved spectral weight displays a pronounced non-reciprocity that implies a distinct non-reciprocal response in the limit of vanishing uniform magnetization at zero magnetic field.
This paper is aiming to review some of the neutron scattering studies performed on URu2Si2 in Grenoble. This compound has been studied for a quarter of century because of a so-called hidden order ground state visible by most of the bulk experiments but almost invisible by microscopic probes like neutrons, muons NMR or x-ray. We stress on some aspects that were not addressed previously. Firstly, the comparison of the cell parameters in the 1-2-2 systems seems to point that the magnetic properties of URu2Si2 are leading by an U4+ electronic state. Secondly, a compilation of the different studies of the tiny antiferromagnetic moment indicates that the tiny antiferromagnetic moment has a constant value which may indicate that it is not necessary extrinsic. We also present the last development on the magnetic form factor measurement in which the magnetic density rotates when entering in the hidden order state. To end, the thermal dependence of the two most intense magnetic excitation at Q0=(1,0,0) and Q1=(0.6,0,0) seems to indicate two different origins or processes for these excitations.
A magnetic Bragg reflection corresponding to the wave vector k13 = (2pi/a)[1/2,1/2,1/2] of the antiferro-quadrupolar ordering is found in CeB6 in zero magnetic field below the Neel temperature TN. Its intensity is two orders of magnitude weaker than those due to the basic magnetic structure [O. Zaharko et al., Phys. Rev. B 68, 214401 (2003)]. The peak has a width of the other Bragg reflections below TN, but widens abruptly at T = TN with simultaneous increase of intensity. Correlation length just above TN is of the order of 70 A. The peak intensity decreases to zero at T = 7 K with no visible anomaly at the antiferro-quadrupolar ordering temperature TQ = 3.3 K. The features of this magnetic ordering are typical for the itinerant magnetism with 5d electron of Ce3+ [Yu.S. Grushko et al., phys. stat. sol. (b) 128, 591 (1985)] being involved.
Several non-cuprates layered transition-metal oxides exhibit clear evidence for stripe ordering of charges and magnetic moments. Therefore, stripe order should be considered as the typical consequence of doping a Mott insulator, but only in cuprates stripe order or fluctuating stripes coexist with metallic properties. A linear relationship between the charge concentration and the incommensurate structural and magnetic modulations can be considered as the finger print of stripe ordering with localized degrees of freedom. In nickelates and in cobaltates with K2NiF4 structure, doping suppresses the nearest-neighbor antiferromagnetism and induces stripe order. The higher amount of doping needed to induce stripe phases in these non-cuprates series can be attributed to reduced charge mobility. Also manganites exhibit clear evidence for stripe phases with further enhanced complexity, because orbital degrees of freedom are involved. Orbital ordering is the key element of stripe order in manganites since it is associated with the strongest structural distortion and with the perfectly fulfilled relation between doping and incommensurability. Magnetic excitations in insulating stripe phases exhibit strong similarity with those in the cuprates, but only for sufficiently short magnetic correlation lengths reflecting well-defined magnetic stripes that are only loosely coupled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا