No Arabic abstract
Coronal implosions - the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure - can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including magnetic flux-rope instability and distortion, followed by filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in expansion or eruption of overlying field, flux-rope instability can also simultaneously implode unopened field due to magnetic energy transfer. It demonstrates the partial opening of the field scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly-Sturrock hypothesis. In the framework of this observation we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard CSHKP flare model.
We study a sequence of eruptive events including filament eruption, a GOES C4.3 flare and a coronal mass ejection. We aim to identify the possible trigger(s) and precursor(s) of the filament destabilisation; investigate flare kernel characteristics; flare ribbons/kernels formation and evolution; study the interrelation of the filament-eruption/flare/coronal-mass-ejection phenomena as part of the integral active-region magnetic field configuration; determine Halpha line profile evolution during the eruptive phenomena. Multi-instrument observations are analysed including Halpha line profiles, speckle images at Halpha-0.8 AA and Halpha+0.8 AA from IBIS at DST/NSO, EUV images and magnetograms from the SDO, coronagraph images from STEREO and the X-ray flux observations from FERMI and GOES. We establish that the filament destabilisation and eruption are the main trigger for the flaring activity. A surge-like event with a circular ribbon in one of the filament footpoints is determined as the possible trigger of the filament destabilisation. Plasma draining in this footpoint is identified as the precursor for the filament eruption. A magnetic flux emergence prior to the filament destabilisation followed by a high rate of flux cancelation of 1.34$times10^{16}$ Mx s$^{-1}$ is found during the flare activity. The flare X-ray lightcurves reveal three phases that are found to be associated with three different ribbons occurring consecutively. A kernel from each ribbon is selected and analysed. The kernel lightcurves and H alpha line profiles reveal that the emission increase in the line centre is stronger than that in the line wings. A delay of around 5-6 mins is found between the increase in the line centre and the occurrence of red asymmetry. Only red asymmetry is observed in the ribbons during the impulsive phases. Blue asymmetry is only associated with the dynamic filament.
Magnetic reconnection modulated by non-local disturbances in the solar atmosphere has been investigated theoretically, but rarely observed. In this study, employing Ha and extreme ultraviolet (EUV) images and line of sight magnetograms, we report acceleration of reconnection by adjacent filament eruption. In Ha images, four groups of chromospheric fibrils are observed to form a saddle-like structure. Among them, two groups of fibrils converge and reconnect. Two newly reconnected fibrils then form, and retract away from the reconnection region. In EUV images, similar structures and evolution of coronal loops are identified. Current sheet forms repeatedly at the interface of reconnecting loops, with width and length of 1-2 and 5.3-7.2 Mm, and reconnection rate of 0.18-0.3. It appears in the EUV low-temperature channels, with average differential emission measure (DEM) weighed temperature and EM of 2 MK and 2.5*10^27 cm-5. Plasmoids appear in the current sheet and propagate along it, and then further along the reconnection loops. The filament, located at the southeast of reconnection region, erupts, and pushes away the loops covering the reconnection region. Thereafter, the current sheet has width and length of 2 and 3.5 Mm, and reconnection rate of 0.57. It becomes much brighter, and appears in the EUV high-temperature channels, with average DEM-weighed temperature and EM of 5.5 MK and 1.7*10^28 cm-5. In the current sheet, more hotter plasmoids form. More thermal and kinetic energy is hence converted. These results suggest that the reconnection is significantly accelerated by the propagating disturbance caused by the nearby filament eruption.
Coronal disturbances associated with solar flares, such as H$alpha$ Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves are discussed herein in relation to magnetohydrodynamics fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a dandelion, associated with the M1.6 flare that occurred on 2011 February 16 in the H$alpha$ images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H$alpha$ images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the extreme ultraviolet images data taken by the Atmospheric Imaging Assembly on board the {it Solar Dynamics Observatory} and by the Extreme Ultraviolet Imager on board the {it Solar Terrestrial Relations Observatory-Ahead}, we confirm that the winking filaments were activated by the EUV coronal wave.
The sun occasionally undergoes the so-called grand minima, in which its magnetic activity, measured by the number of sunspots, is suppressed for decades. The most prominent grand minima, since the beginning of telescopic observations of sunspots, is the Maunder minimum (1645-1715), when the sunspots became rather scarce. The mechanism underlying the grand minima remains poorly understood as there is little observational information of the solar magnetic field at that time. In this study, we examine the records of one candidate aurora display in China and Japan during the Maunder minimum. The presence of auroras in such mid magnetic latitudes indicates the occurrence of great geomagnetic storms that are usually produced by strong solar flares. However, the records of contemporary sunspot observations from Europe suggest that, at least for the likely aurora event, there was no large sunspot that could produce a strong flare. Through simple theoretical arguments, we show that this geomagnetic storm could have been generated by an eruption giant quiescent filament, or a series of such events.
We analyze the observations of EUV loop evolution associated with the filament eruption located at the border of an active region. The event SOL2013-03-16T14:00 was observed with a large difference of view point by the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory --A spacecraft. The filament height is fitted with the sum of a linear and exponential function. These two phases point to different physical mechanisms such as: tether-cutting reconnection and a magnetic instability. While no X-ray emission is reported, this event presents the classical eruption features like: separation of double ribbons and the growth of flare loops. We report the migration of the southern foot of the erupting filament flux rope due to the interchange reconnection with encountered magnetic loops of a neighbouring AR. Parallel to the erupting filament, a stable filament remains in the core of active region. The specificity of this eruption is that coronal loops, located above the nearly joining ends of the two filaments, first contract in phase, then expand and reach a new stable configuration close to the one present at the eruption onset. Both contraction and expansion phases last around 20 min. The main difference with previous cases is that the PIL bent about 180 deg around the end of the erupting filament because the magnetic configuration is at least tri-polar. These observations are challenging for models which interpreted previous cases of loop contraction within a bipolar configuration. New simulations are required to broaden the complexity of the configurations studied.