No Arabic abstract
We present a theoretical application of an optimal experiment design (OED) methodology to the development of mathematical models to describe the stimulus-response relationship of sensory neurons. Although there are a few related studies in the computational neuroscience literature on this topic, most of them are either involving non-linear static maps or simple linear filters cascaded to a static non-linearity. Although the linear filters might be appropriate to demonstrate some aspects of neural processes, the high level of non-linearity in the nature of the stimulus-response data may render them inadequate. In addition, modelling by a static non-linear input - output map may mask important dynamical (time-dependent) features in the response data. Due to all those facts a non-linear continuous time dynamic recurrent neural network that models the excitatory and inhibitory membrane potential dynamics is preferred. The main goal of this research is to estimate the parametric details of this model from the available stimulus-response data. In order to design an efficient estimator an optimal experiment design scheme is proposed which computes a pre-shaped stimulus to maximize a certain measure of Fisher Information Matrix. This measure depends on the estimated values of the parameters in the current step and the optimal stimuli are used in a maximum likelihood estimation procedure to find an estimate of the network parameters. This process works as a loop until a reasonable convergence occurs. The response data is discontinuous as it is composed of the neural spiking instants which is assumed to obey the Poisson statistical distribution. Thus the likelihood functions depend on the Poisson statistics. In order to validate the approach and evaluate its performance, a comparison with another approach on estimation based on randomly generated stimuli is also presented.
We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) which have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allow us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data is generated by a Phased Cosine Fourier series having fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size and sample size are applied in order to examine the effect of stimulus to the identification process. Results are presented in tabular form at the end of this text.
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. To be able to infer a model for this distribution from large-scale neural recordings, we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. The model is able to capture the single-cell response properties as well as the correlations in neural spiking due to shared stimulus and due to effective neuron-to-neuron connections. Here we show that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. As a result, the SDME model gives a more accurate account of single cell responses and in particular outperforms uncoupled models in reproducing the distributions of codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like surprise and information transmission in a neural population.
The ability of the organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this neural metric tells us how distinguishable a pair of stimulus clips is to the retina, given the noise in the neural population response. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the SVM-like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding.
The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve local ambiguity and fill in missing details. In this study, we find that introducing feedback loops and horizontal recurrent connections to a deep convolution neural network (VGG16) allows the network to become more robust against noise and occlusion during inference, even in the initial feedforward pass. This suggests that recurrent feedback and contextual modulation transform the feedforward representations of the network in a meaningful and interesting way. We study the population codes of neurons in the network, before and after learning with feedback, and find that learning with feedback yielded an increase in discriminability (measured by d-prime) between the different object classes in the population codes of the neurons in the feedforward path, even at the earliest layer that receives feedback. We find that recurrent feedback, by injecting top-down semantic meaning to the population activities, helps the network learn better feedforward paths to robustly map noisy image patches to the latent representations corresponding to important visual concepts of each object class, resulting in greater robustness of the network against noises and occlusion as well as better fine-grained recognition.
In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.