Do you want to publish a course? Click here

The Magnetic Field of L1544: I. Near-Infrared Polarimetry and the Non-Uniform Envelope

104   0   0.0 ( 0 )
 Added by Dan Clemens
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic field (B-field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B-field. NIR linear polarization measurements of over 1,700 stars were obtained in the H-band and 201 of these were also measured in the K-band. The NIR BSP properties are correlated with reddening, as traced using the RJCE (H-M) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarization position angles change at the location of the cloud and exhibit their lowest dispersion of position angles there, offering strong evidence that NIR polarization traces the plane-of-sky B-field of L1544. In this paper, the uniformity of the plane-of-sky B-field in the envelope region of L1544 is quantitatively assessed. This allowed evaluating the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the envelope radio Zeeman observations, as in Crutcher et al. (2009). In L1544, the NIR BSP shows the envelope B-field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B-field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.



rate research

Read More

We present a NIR polarimetric map of the 1deg by 1deg region toward the Galactic center. Comparing Stokes parameters between highly reddened stars and less reddened ones, we have obtained a polarization originating from magnetically aligned dust grains at the central region of our Galaxy. The distribution of position angles shows a peak at the parallel direction to the Galactic plane, suggesting a toroidal magnetic field configuration. However, at high Galactic latitudes, the peak of the position angles departs from the direction of the Galactic plane. This may be a transition of a large-scale magnetic field configuration from toroidal to poloidal.
An optically and geometrically thick torus obscures the central engine of Active Galactic Nuclei (AGN) from some lines of sight. From a magnetohydrodynamical framework, the torus can be considered to be a particular region of clouds surrounding the central engine where the clouds are dusty and optically thick. In this framework, the magnetic field plays an important role in the creation, morphology and evolution of the torus. If the dust grains within the clouds are assumed to be aligned by paramagnetic alignment, then the ratio of the intrinsic polarisation and visual extinction, P(%)/Av, is a function of the magnetic field strength. To estimate the visual extinction through the torus and constrain the polarisation mechanisms in the nucleus of AGN, we developed a polarisation model to fit both the total and polarised flux in a 1.2 (~263pc) aperture of the type 2 AGN, IC5063. The polarisation model is consistent with the nuclear polarisation observed at K being produced by dichroic absorption from aligned dust grains with a visual extinction through the torus of 48$pm$2 mag. We estimated the intrinsic polarisation arising from dichroic absorption to be P$_{K}^{dic}$=12.5$pm$2.7%. We consider the physical conditions and environment of the gas and dust for the torus of IC5063. Then, through paramagnetic alignment, we estimate a magnetic field strength in the range of 12-128mG in the NIR emitting regions of the torus of IC5063. Alternatively, we estimate the magnetic field strength in the plane of the sky using the Chandrasekhar-Fermi method. The minimum magnetic field strength in the plane of the sky is estimated to be 13 and 41 mG depending of the conditions within the torus of IC5063. These techniques afford the chance to make a survey of AGN, to investigate the effects of magnetic field strength on the torus, accretion, and interaction to the host galaxy.
We present a large-scale view of the magnetic field in the central 2deg * 2deg region of our Galaxy. The polarization of point sources has been measured in the J, H, and Ks bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m telescope IRSF. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we obtain polarization originating from magnetically aligned dust grains in the central few-hundred pc of our Galaxy. We find that near the Galactic plane, the magnetic field is almost parallel to the Galactic plane (i.e., toroidal configuration) but at high Galactic latitudes (| b | > 0.4deg), the field is nearly perpendicular to the plane (i.e., poloidal configuration). This is the first detection of a smooth transition of the large-scale magnetic field configuration in this region.
We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescope and CIAO NIR camera on the Subaru telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007 and 28 May 2008). We used a model of synchrotron emission from relativistic electrons in the inner parts of an accretion disk. The relativistic simulations have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe the existence of a correlation between the modulations of the observed flux density light curves and changes in polarimetric data. Furthermore, we confirm that the same correlation is also predicted by the hot spot model. Correlations between intensity and polarimetric parameters of the observed light curves as well as a comparison of predicted and observed light curve features through a pattern recognition algorithm result in the detection of a signature of orbiting matter under the influence of strong gravity. This pattern is detected statistically significant against randomly polarized red noise. Expected results from future observations of VLT interferometry like GRAVITY experiment are also discussed.
The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H-band (1.6 um) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with signal-to-noise ratio greater than three out to a surface brightness of 18.8 mag arcsec^-2. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12 deg and 19 deg, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the NE disk but not the SW disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا