We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over $N gg 1$ fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that this monodromy charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height $propto e^{-N}$, so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.