Do you want to publish a course? Click here

Large Molecular Gas Reservoirs in Ancestors of Milky Way-Mass Galaxies 9 Billion Years Ago

193   0   0.0 ( 0 )
 Added by Casey Papovich
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gas accretion and star-formation histories of galaxies like the Milky Way remain an outstanding problem in astrophysics. Observations show that 8 billion years ago, the progenitors to Milky Way-mass galaxies were forming stars 30 times faster than today and predicted to be rich in molecular gas, in contrast with low present-day gas fractions ($<$10%). Here we show detections of molecular gas from the CO(J=3-2) emission (rest-frame 345.8 GHz) in galaxies at redshifts z=1.2-1.3, selected to have the stellar mass and star-formation rate of the progenitors of todays Milky Way-mass galaxies. The CO emission reveals large molecular gas masses, comparable to or exceeding the galaxy stellar masses, and implying most of the baryons are in cold gas, not stars. The galaxies total luminosities from star formation and CO luminosities yield long gas-consumption timescales. Compared to local spiral galaxies, the star-formation efficiency, estimated from the ratio of total IR luminosity to CO emission,} has remained nearly constant since redshift z=1.2, despite the order of magnitude decrease in gas fraction, consistent with results for other galaxies at this epoch. Therefore the physical processes that determine the rate at which gas cools to form stars in distant galaxies appear to be similar to that in local galaxies.



rate research

Read More

250 - K. Decker French 2015
Post-starburst (or E+A) galaxies are characterized by low H$alpha$ emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby ($0.01<z<0.12$) post-starburst galaxies drawn from the Sloan Digital Sky Survey. We detect CO in 17 (53%). Using CO as a tracer for molecular hydrogen, and a Galactic conversion factor, we obtain molecular gas masses of $M(H_2)=10^{8.6}$-$10^{9.8} M_odot$ and molecular gas mass to stellar mass fractions of $sim10^{-2}$-$10^{-0.5}$, comparable to those of star-forming galaxies. The large amounts of molecular gas rule out complete gas consumption, expulsion, or starvation as the primary mechanism that ends the starburst in these galaxies. The upper limits on $M(H_2)$ for the 15 undetected galaxies range from $10^{7.7} M_odot$ to $10^{9.7} M_odot$, with the median more consistent with early-type galaxies than with star-forming galaxies. Upper limits on the post-starburst star formation rates (SFRs) are lower by $sim10times$ than for star-forming galaxies with the same $M(H_2)$. We also compare the molecular gas surface densities ($Sigma_{rm H_2}$) to upper limits on the SFR surface densities ($Sigma_{rm SFR}$), finding a significant offset, with lower $Sigma_{rm SFR}$ for a given $Sigma_{rm H_2}$ than is typical for star-forming galaxies. This offset from the Kennicutt-Schmidt relation suggests that post-starbursts have lower star formation efficiency, a low CO-to-H$_2$ conversion factor characteristic of ULIRGs, and/or a bottom-heavy initial mass function, although uncertainties in the rate and distribution of current star formation remain.
Submillimeter bright galaxies in the early Universe are vigorously forming stars at ~1000 times higher rate than the Milky Way. A large fraction of stars is formed in the central 1 kiloparsec region, that is comparable in size to massive, quiescent galaxies found at the peak of the cosmic star formation history, and eventually the core of giant elliptical galaxies in the present-day Universe. However, the physical and kinematic properties inside a compact starburst core are poorly understood because dissecting it requires angular resolution even higher than the Hubble Space Telescope can offer. Here we report 550 parsec-resolution observations of gas and dust in the brightest unlensed submillimeter galaxy at z=4.3. We map out for the first time the spatial and kinematic structure of molecular gas inside the heavily dust-obscured core. The gas distribution is clumpy while the underlying disk is rotation-supported. Exploiting the high-quality map of molecular gas mass surface density, we find a strong evidence that the starburst disk is gravitationally unstable, implying that the self-gravity of gas overcomes the differential rotation and the internal pressure by stellar radiation feedback. The observed molecular gas would be consumed by star formation in a timescale of 100 million years, that is comparable to those in merging starburst galaxies. Our results suggest that the most extreme starburst in the early Universe originates from efficient star formation due to a gravitational instability in the central 2 kpc region.
The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with $10^4$-$10^7$ solar masses and radii of 5-100 parsecs, are the seeds of star formation. Highlighting the molecular gas structure at such small scales in distant galaxies is observationally challenging. Only a handful of molecular clouds were reported in two extreme submillimetre galaxies at high redshift. Here we search for GMCs in a typical Milky Way progenitor at z = 1.036. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we mapped the CO(4-3) emission of this gravitationally lensed galaxy at high resolution, reading down to 30 parsecs, which is comparable to the resolution of CO observations of nearby galaxies. We identify 17 molecular clouds, characterized by masses, surface densities and supersonic turbulence all of which are 10-100 times higher than present-day analogues. These properties question the universality of GMCs and suggest that GMCs inherit their properties from ambient interstellar medium. The measured cloud gas masses are similar to the masses of stellar clumps seen in the galaxy in comparable numbers. This corroborates the formation of molecular clouds by fragmentation of distant turbulent galactic gas disks, which then turn into stellar clumps ubiquitously observed in galaxies at cosmic noon.
In cold dark matter cosmology, the baryonic components of galaxies are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark matter halo. In the local Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius. Comparison between the dynamical mass and the sum of stellar and cold gas mass at the peak epoch of galaxy formation, inferred from ancillary data, suggest high baryon factions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (stellar initial mass function, calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of two main factors: first, a large fraction of the massive, high-redshift galaxy population was strongly baryon dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early Universe efficiently condensed at the centres of dark matter halos when gas fractions were high, and dark matter was less concentrated. [Abridged]
Unresolved gas and dust observations show a surprising diversity in the amount of interstellar matter in early-type galaxies. Using ALMA observations we resolve the ISM in z$sim$0.05 early-type galaxies. From a large sample of early-type galaxies detected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) we selected five of the dustiest cases, with dust masses M$_dsim$several$times10^7$M$_odot$, with the aim of mapping their submillimetre continuum and $^{12}$CO(2-1) line emission distributions. These observations reveal molecular gas disks. There is a lack of associated, extended continuum emission in these ALMA observations, most likely because it is resolved out or surface brightness limited, if the dust distribution is as extended as the CO gas. However, two galaxies have central continuum ALMA detections. An additional, slightly offset, continuum source is revealed in one case, which may have contributed to confusion in the Herschel fluxes. Serendipitous continuum detections further away in the ALMA field are found in another case. Large and massive rotating molecular gas disks are mapped in three of our targets, reaching a few$times10^{9}$M$_odot$. One of these shows evidence of kinematic deviations from a pure rotating disc. The fields of our two remaining targets contain only smaller, weak CO sources, slightly offset from the optical galaxy centres. These may be companion galaxies seen in ALMA observations, or background objects. These heterogeneous findings in a small sample of dusty early-type galaxies reveal the need for more such high spatial resolution studies, to understand statistically how dust and gas are related in early-type galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا