Do you want to publish a course? Click here

V-type Near-Earth asteroids: dynamics, close encounters and impacts with terrestrial planets

119   0   0.0 ( 0 )
 Added by Mattia Galiazzo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Asteroids colliding with planets vary in composition and taxonomical type. Among Near-Earth Asteroids (NEAs) are the V-types, basaltic asteroids that are classified via spectroscopic observations. In this work, we study the probability of V-type NEAs colliding with Earth, Mars and Venus, as well as the Moon. We perform a correlational analysis of possible craters produced by V-type NEAs. To achieve this, we performed numerical simulations and statistical analysis of close encounters and impacts between V-type NEAs and the terrestrial planets over the next 10 Myr. We find that V-type NEAs can indeed have impacts with all the planets, the Earth in particular, at an average rate of once per 12 Myr. There are four candidate craters on Earth that were likely caused by V-type NEAs.



rate research

Read More

237 - Takashi Ito , Renu Malhotra 2009
Recent lunar crater studies have revealed an asymmetric distribution of rayed craters on the lunar surface. The asymmetry is related to the synchronous rotation of the Moon: there is a higher density of rayed craters on the leading hemisphere compared with the trailing hemisphere. Rayed craters represent generally the youngest impacts. The purpose of this paper is to test the hypotheses that (i) the population of Near-Earth asteroids (NEAs) is the source of the impactors that have made the rayed craters, and (ii) that impacts by this projectile population account quantitatively for the observed asymmetry. We carried out numerical simulations of the orbital evolution of a large number of test particles representing NEAs in order to determine directly their impact flux on the Moon. The simulations were done in two stages. In the first stage we obtained encounter statistics of NEAs on the Earths activity sphere. In the second stage we calculated the direct impact flux of the encountering particles on the surface of the Moon; the latter calculations were confined within the activity sphere of the Earth. A steady-state synthetic population of NEAs was generated from a debiased orbital distribution of the known NEAs. We find that the near-Earth asteroids do have an asymmetry in their impact flux on the Moon: apex-to-antapex ratio of 1.32 +/- 0.01. However, the observed rayed crater distributions asymmetry is significantly more pronounced: apex-to-antapex ratio of 1.65 +/- 0.16. Our results suggest the existence of an undetected population of slower (low impact velocity) projectiles, such as a population of objects nearly coorbiting with Earth; more observational study of young lunar craters is needed to secure this conclusion.
Gaia is an astrometric mission that will be launched in spring 2013. There are many scientific outcomes from this mission and as far as our Solar System is concerned, the satellite will be able to map thousands of main belt asteroids (MBAs) and near-Earth objects (NEOs) down to magnitude < 20. The high precision astrometry (0.3-5 mas of accuracy) will allow orbital improvement, mass determination, and a better accuracy in the prediction and ephemerides of potentially hazardous asteroids (PHAs). We give in this paper some simulation tests to analyse the impact of Gaia data on known asteroids orbit, and their value for the analysis of NEOs through the example of asteroid (99942) Apophis. We then present the need for a follow-up network for newly discovered asteroids by Gaia, insisting on the synergy of ground and space data for the orbital improvement.
We seek evidence of the Yarkovsky effect among Near Earth Asteroids (NEAs) by measuring the Yarkovsky-related orbital drift from the orbital fit. To prevent the occurrence of unreliable detections we employ a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms, and a suitable astrometric data treatment. We find 21 NEAs whose orbital fits show a measurable orbital drift with a signal to noise ratio (SNR) greater than 3. The best determination is for asteroid (101955) 1999 RQ36, resulting in the recovery of one radar apparition and an orbit improvement by two orders of magnitude. In addition, we find 16 cases with a lower SNR that, despite being less reliable, are good candidates for becoming stronger detections in the future. In some cases it is possible to constrain physical quantities otherwise unknown by means of the detected orbital drift. Furthermore, the distribution of the detected orbital drifts shows an excess of retrograde rotators that can be connected to the delivery mechanism from the most important NEA feeding resonances and allows us to infer the distribution for NEAs obliquity. We discuss the implications of the Yarkovsky effect for impact predictions. In particular, for asteroid (29075) 1950 DA our results favor a retrograde rotation that would rule out an impact in 2880.
Gaia is an astrometric mission that will be launched in 2013 and set on L2 point of Lagrange. It will observe a large number of Solar System Objets (SSO) down to magnitude 20. The Solar System Science goal is to map thousand of Main Belt asteroids (MBAs), Near Earth Objects (NEOs) (including comets) and also planetary satellites with the principal purpuse of orbital determination (better than 5 mas astrometric precision), determination of asteroid mass, spin properties and taxonomy. Besides, Gaia will be able to discover a few objects, in particular NEOs in the region down to the solar elongation 45{deg} which are harder to detect with current ground-based surveys. But Gaia is not a follow-up mission and newly discovered objects can be lost if no ground-based recovery is processed. The purpose of this study is to quantify the impact of Gaia data for the known NEAs population and to show how to handle the problem of these discoveries when faint number of observations and thus very short arc is provided.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا