No Arabic abstract
Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.
We present a sound and automated approach to synthesize safe digital feedback controllers for physical plants represented as linear, time invariant models. Models are given as dynamical equations with inputs, evolving over a continuous state space and accounting for errors due to the digitalization of signals by the controller. Our approach has two stages, leveraging counterexample guided inductive synthesis (CEGIS) and reachability analysis. CEGIS synthesizes a static feedback controller that stabilizes the system under restrictions given by the safety of the reach space. Safety is verified either via BMC or abstract acceleration; if the verification step fails, we refine the controller by generalizing the counterexample. We synthesize stable and safe controllers for intricate physical plant models from the digital control literature.
We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID controller (or any other type of controller, for that matter) with safety and performance guarantees for such a general class of systems. In particular, we consider hybrid systems with nonlinear dynamics (Lipschitz-continuous ordinary differential equations) and random parameters, and we synthesize PID controllers such that the resulting closed-loop systems satisfy safety and performance constraints given as probabilistic bounded reachability properties. Our technique leverages SMT solvers over the reals and nonlinear differential equations to provide formal guarantees that the synthesized controllers satisfy such properties. These controllers are also robust by design since they minimize the probability of reaching an unsafe state in the presence of random disturbances. We apply our approach to the problem of insulin regulation for type 1 diabetes, synthesizing controllers with robust responses to large random meal disturbances, thereby enabling them to maintain blood glucose levels within healthy, safe ranges.
An automated counterexample reproducibility tool based on MATLAB is presented, called DSValidator, with the goal of reproducing counterexamples that refute specific properties related to digital systems. We exploit counterexamples generated by the Digital System Verifier (DSVerifier), which is a model checking tool based on satisfiability modulo theories for digital systems. DSValidator reproduces the execution of a digital system, relating its input with the counterexample, in order to establish trust in a verification result. We show that DSValidator can validate a set of intricate counterexamples for digital controllers used in a real quadrotor attitude system within seconds and also expose incorrect verification results in DSVerifier. The resulting toolbox leverages the potential of combining different verification tools for validating digital systems via an exchangeable counterexample format.
We present a new method for the automated synthesis of digital controllers with formal safety guarantees for systems with nonlinear dynamics, noisy output measurements, and stochastic disturbances. Our method derives digital controllers such that the corresponding closed-loop system, modeled as a sampled-data stochastic control system, satisfies a safety specification with probability above a given threshold. The proposed synthesis method alternates between two steps: generation of a candidate controller pc, and verification of the candidate. pc is found by maximizing a Monte Carlo estimate of the safety probability, and by using a non-validated ODE solver for simulating the system. Such a candidate is therefore sub-optimal but can be generated very rapidly. To rule out unstable candidate controllers, we prove and utilize Lyapunovs indirect method for instability of sampled-data nonlinear systems. In the subsequent verification step, we use a validated solver based on SMT (Satisfiability Modulo Theories) to compute a numerically and statistically valid confidence interval for the safety probability of pc. If the probability so obtained is not above the threshold, we expand the search space for candidates by increasing the controller degree. We evaluate our technique on three case studies: an artificial pancreas model, a powertrain control model, and a quadruple-tank process.
This paper provides a class of feedback controllers that guarantee global stability of quantum angular momentum systems. The systems are in general finite dimensions and the stability is around an assigned eigenstate of observables with a specific form. It is realized by employing the control law which was proposed by Mirrahimi & van Handel. The class of stabilizing controllers is parameterized by a switching parameter and we show that the parameter between 0 and 1/N assures the stability, where N is the dimension of the quantum systems.