Do you want to publish a course? Click here

Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with physical pion mass

102   0   0.0 ( 0 )
 Added by Luchang Jin
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_mu^{text{HLbL}} = 5.35 (1.35) times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.



rate research

Read More

We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = (7.41pm6.33)times 10^{-10}$
The quark-connected part of the hadronic light-by-light scattering contribution to the muons anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical, $171$ MeV pion mass on a $(4.6;mathrm{fm})^3$ spatial volume using the $32^3times 64$ Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.
We report our recent lattice calculation of hadronic light-by-light contribution to muon $g-2$ using our recently developed moment method. The connected diagrams and the leading disconnected diagrams are included. The calculation is performed on a $48^3 times 96$ lattice with physical pion mass and 5.5 fm box size. We expect sizable finite volume and finite lattice spacing corrections to the results of these calculations which will be estimated in calculations to be carried out over the next 1-2 years.
The anomalous magnetic moment of muon, $g-2$, is a very precisely measured quantity. However, the current measurement disagrees with standard model by about 3 standard deviations. Hadronic vacuum polarization and hadronic light by light are the two types of processes that contribute most to the theoretical uncertainty. I will describe how lattice methods are well-suited to provide a first-principles result for the hadronic light by light contribution, the various numerical strategies that are presently being used to evaluate it, our current results and the important remaining challenges which must be overcome.
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا