No Arabic abstract
Chained correlation inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed based on the positivity of a sequence of moment matrices. When a jointly measurable set of fuzzy POVMs is employed in first measurement of every pair of sequential measurements, the chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We identify that incompatibility of measurements is only necessary, but not sufficient, in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit observables and the optimal violation of a non-local steering inequality, proposed by Jones and Wiseman (Phys. Rev. A, 84, 012110 (2011)). To this end, we construct a local analogue of this steering inequality in a single qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.
We show how to construct loss-tolerant linear steering inequalities using a generic set of von Neumann measurements that are violated by $d$-dimensional states, and that rely only upon a simple property of the set of measurements used (the maximal overlap between measurement directions). Using these inequalities we show that the critical detection efficiency above which $n$ von Neumann measurements can demonstrate steering is $1/n$. We show furthermore that using our construction and high dimensional states allows for steering demonstrations which are also highly robust to depolarising noise and produce unbounded violations in the presence of loss. Finally, our results provide an explicit means to certify the non-joint measurability of any set of inefficient von Neuman measurements.
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if and only if} its marginal POVMs are jointly measurable. The proof suggests to employ the negatives of ${W}$-measure as an indicator for non-joint measurability. By applying triangle inequalities to the negativity, we derive joint measurability criteria for dichotomic and trichotomic variables. Also, we propose an operational test for the joint measurability in sequential measurement scenario.
This talk is a survey of the question of joint measurability of coexistent observables and its is based on the monograph Operational Quantum Physics [1] and on the papers [2,3,4].
Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. Nevertheless, only a few results are available to quantify steerability using analytical results. In this work, we propose a method for quantifying the steerability in two-qubit quantum states in the two-setting EPR-steering scenario, using the connection between joint measurability and steerability. We derive an analytical formula for the steerability of a class of X-states. The sufficient and necessary conditions for two-setting EPRsteering are presented. Based on these results, a class of asymmetric states, namely, one-way steerable states, are obtained.
Quantum measurements can be interpreted as a generalisation of probability vectors, in which non-negative real numbers are replaced by positive semi-definite operators. We extrapolate this analogy to define a generalisation of doubly stochastic matrices that we call doubly normalised tensors (DNTs), and formulate a corresponding version of Birkhoff-von Neumanns theorem, which states that permutations are the extremal points of the set of doubly stochastic matrices. We prove that joint measurability arises as a mathematical feature of DNTs in this context, needed to establish a characterisation similar to Birkhoff-von Neumanns. Conversely, we also show that DNTs emerge naturally from a particular instance of a joint measurability problem, remarking its relevance in general operator theory.