Do you want to publish a course? Click here

Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term

75   0   0.0 ( 0 )
 Added by Gansukh Tumurtushaa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study inflationary models with a Gauss-Bonnet term to reconstruct the scalar field potentials and the Gauss-Bonnet coupling functions from the observable quantities. Using the observationally favored relations for both $n_s$ and $r$, we derive the expressions for both the scalar field potentials and the coupling functions. The implication of the blue-tilted spectrum, $n_t>0$, of the primordial tensor fluctuations is discussed for the reconstructed configurations of the scalar field potential and the Gauss-Bonnet coupling.



rate research

Read More

74 - V.K. Oikonomou 2021
We provide a refined and much more simplified Einstein-Gauss-Bonnet inflationary theoretical framework, which is compatible with the GW170817 observational constraints on the gravitational wave speed. As in previous works, the constraint that the gravitational wave speed is $c_T^2=1$ in natural units, results to a constraint differential equation that relates the coupling function of the scalar field to the Gauss-Bonnet invariant $xi(phi)$ and the scalar potential $V(phi)$. Adopting the slow-roll conditions for the scalar field and the Hubble rate, and in contrast to previous works, by further assuming that $kappa frac{xi }{xi}ll 1$, which is motivated by slow-roll arguments, we succeed in providing much more simpler expressions for the slow-roll indices and for the tensor and scalar spectral indices and for the tensor-to-scalar ratio. We exemplify our refined theoretical framework by using an illustrative example with a simple power-law scalar coupling function $xi(phi)sim phi^{ u}$ and as we demonstrate the resulting inflationary phenomenology is compatible with the latest Planck data. Moreover, this particular model produces a blue-tilted tensor spectral index, so we discuss in brief the perspective of describing the NANOGrav result with this model as is indicated in the recent literature.
In this paper the focus is on inflationary dynamics in the context of Einstein Gauss-Bonnet gravitational theories. We investigate the implications of the slow-roll condition on the slow-roll indices and we investigate how the inflationary dynamical evolution is affected by the presence of the Gauss-Bonnet coupling to the scalar field. For exemplification of our analysis we investigate how the dynamics of inflationary cubic, quartic order and also exponential scalar potentials are affected by the non-trivial Gauss-Bonnet coupling to the scalar field. As we demonstrate it is possible to obtain a viable phenomenology compatible with the observational data, although the canonical scalar field theory with cubic and quartic order potentials does not yield phenomenologically acceptable results. In addition, with regard to the exponential potential example, the Einstein Gauss-Bonnet extension of the single canonical scalar field model has an inherent mechanism that can trigger the graceful exit from inflation. Furthermore we introduce a bottom-up reconstruction technique, in the context of which by fixing the tensor-to-scalar ratio and the Hubble rate as a function of the $e$-foldings number, one is capable of reproducing the Einstein Gauss-Bonnet theory which generates the aforementioned quantities. We illustrate how the method works by using some relatively simple examples.
We study the slow-roll single field inflation in the context of the consistent $Dto4$ Einstein-Gauss-Bonnet gravity that was recently proposed in cite{Aoki:2020lig}. In addition to the standard attractor regime, we find a new attractor regime which we call the Gauss-Bonnet attractor as the dominant contribution comes from the Gauss-Bonnet term. Around this attractor solution, we find power spectra and spectral tilts for the curvature perturbations and gravitational waves (GWs) and also a model-independent consistency relation among observable quantities. The Gauss-Bonnet term provides a nonlinear $k^4$ term to the GWs dispersion relation which has the same order as the standard linear $k^2$ term at the time of horizon crossing around the Gauss-Bonnet attractor. The Gauss-Bonnet attractor regime thus provides a new scenario for the primordial GWs which can be tested by observations. Finally, we study non-Gaussianity of GWs in this model and estimate the nonlinear parameters $f^{s_1s_2s_3}_{rm NL,;sq}$ and $f^{s_1s_2s_3}_{rm NL,;eq}$ by fitting the computed GWs bispectra with the local-type and equilateral-type templates respectively at the squeezed limit and at the equilateral shape. For helicities $(+++)$ and $( -- )$, $f^{s_1s_2s_3}_{rm NL,;sq}$ is larger while $f^{s_1s_2s_3}_{rm NL,;eq}$ is larger for helicities $(++-)$ and $(--+)$.
In a subclass of scalar-tensor theories, it has been shown that standard general relativity solutions of neutron stars and black holes with trivial scalar field profiles are unstable. Such an instability leads to solutions which are different from those of general relativity and have non-trivial scalar field profiles, in a process called scalarization. In the present work we focus on scalarization due to a non-minimal coupling of the scalar field to the Gauss-Bonnet curvature invariant. The coupling acts as a tachyonic mass for the scalar mode, thus leading to the instability of general relativity solutions. We point out that a similar effect may occur for the scalar modes in a cosmological background, resulting in the instability of cosmological solutions. In particular, we show that a catastrophic instability develops during inflation within a period of time much shorter than the minimum required duration of inflation. As a result, the standard cosmological dynamics is not recovered. This raises the question of the viability of scalar-Gauss-Bonnet theories exhibiting scalarization.
136 - Takafumi Kokubu , Hideki Maeda , 2015
The effect of the Gauss-Bonnet term on the existence and dynamical stability of thin-shell wormholes as negative tension branes is studied in the arbitrary dimensional spherically, planar, and hyperbolically symmetric spacetimes. We consider radial perturbations against the shell for the solutions which have the Z${}_2$ symmetry and admit the general relativistic limit. It is shown that the Gauss-Bonnet term shrinks the parameter region admitting static wormholes. The effect of the Gauss-Bonnet term on the stability depends on the spacetime symmetry. For planar symmetric wormholes, the Gauss-Bonnet term does not affect their stability. If the coupling constant is positive but small, the Gauss-Bonnet term tends to destabilize spherically symmetric wormholes, while it stabilizes hypebolically symmetric wormholes. The Gauss-Bonnet term can destabilize hypebolically symmetric wormholes as a non-perturbative effect, however, spherically symmetric wormholes cannot be stable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا