Do you want to publish a course? Click here

Upper limits on the mass and luminosity of Population III-dominated galaxies

44   0   0.0 ( 0 )
 Added by Hidenobu Yajima
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We here derive upper limits on the mass and luminosity of Population III (POPIII) dominated proto-galaxies based on the collapse of primordial gas under the effect of angular momentum loss via Ly$alpha$ radiation drag and the gas accretion onto a galactic centre. Our model predicts that POPIII-dominated galaxies at z ~ 7 are hosted by haloes with $M_{rm halo} sim 1.5 times 10^{8} - 1.1 times 10^{9} rm ~M_{odot}$, that they have Ly$alpha$ luminosities of $L_{rm Lyalpha} sim 3.0 times 10^{42} - 2.1 times 10^{43}$ erg/s, stellar mass of $M_{rm star} sim 0.8 times 10^{5} - 2.5 times 10^{6} rm ~M_{odot}$, and outflowing gas with velocities $V_{rm out} sim 40$ km/s due to Ly$alpha$ radiation pressure. We show that the POPIII galaxy candidate CR7 violates the derived limits on stellar mass and Ly$alpha$ luminosity and thus is unlikely to be a POPIII galaxy. POPIII-dominated galaxies at z ~ 7 have HeII line emission that is ~1- 3 orders of magnitude lower then that of Ly$alpha$, they have high Ly$alpha$ equivalent width of > 300 $AA$ and should be found close to bright star forming galaxies. The HeII 1640 $AA$ line is in comfortable reach of next generation telescopes, like the JWST or TMT.



rate research

Read More

We study the number and the distribution of low mass Pop III stars in the Milky Way. In our numerical model, hierarchical formation of dark matter minihalos and Milky Way sized halos are followed by a high resolution cosmological simulation. We model the Pop III formation in H2 cooling minihalos without metal under UV radiation of the Lyman-Werner bands. Assuming a Kroupa IMF from 0.15 to 1.0 Msun for low mass Pop III stars, as a working hypothesis, we try to constrain the theoretical models in reverse by current and future observations. We find that the survivors tend to concentrate on the center of halo and subhalos. We also evaluate the observability of Pop III survivors in the Milky Way and dwarf galaxies, and constraints on the number of Pop III survivors per minihalo. The higher latitude fields require lower sample sizes because of the high number density of stars in the galactic disk, the required sample sizes are comparable in the high and middle latitude fields by photometrically selecting low metallicity stars with optimized narrow band filters, and the required number of dwarf galaxies to find one Pop III survivor is less than ten at <100 kpc for the tip of redgiant stars. Provided that available observations have not detected any survivors, the formation models of low mass Pop III stars with more than ten stars per minihalo are already excluded. Furthermore, we discuss the way to constrain the IMF of Pop III star at a high mass range of > 10 Msun.
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to $zsim 1$ to date. In this exploratory study of cluster galaxy evolution from $z=1$ to $z=0.3$, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg$^2$ area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the 4 redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose $zapprox 1$ mass is about $2times 10^{14},M_odot$. Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between $z=1$ and 0.3), and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to $zsim 1$, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at $zsim 0.8$.
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representative of their natal gas cloud composition. For this reason, the chemistry of extremely metal-poor stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 extremely metal-poor stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function to a subset of 29 of theinferred Population III star masses, and find that the mass distribution is well-represented by a power law IMF with exponent $alpha = 2.35^{+0.29}_{-0.24}$. The inferred maximum progenitor mass for supernovae from massive Population III stars is $M_{rm{max}} = 87^{+13}_{-33}$ M$_odot$, and we find no evidence in our sample for a contribution from stars with masses above $sim$120 M$_odot$. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the initial mass function of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.
We study the gas kinematics traced by the 21-cm emission of a sample of six HI$-$rich low surface brightness galaxies classified as ultra-diffuse galaxies (UDGs). Using the 3D kinematic modelling code $mathrm{^{3D}}$Barolo we derive robust circular velocities, revealing a startling feature: HI$-$rich UDGs are clear outliers from the baryonic Tully-Fisher relation, with circular velocities much lower than galaxies with similar baryonic mass. Notably, the baryon fraction of our UDG sample is consistent with the cosmological value: these UDGs are compatible with having no missing baryons within their virial radii. Moreover, the gravitational potential provided by the baryons is sufficient to account for the amplitude of the rotation curve out to the outermost measured point, contrary to other galaxies with similar circular velocities. We speculate that any formation scenario for these objects will require very inefficient feedback and a broad diversity in their inner dark matter content.
Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific generation has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement (AMR) technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a small-scale dynamo process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the small scale dynamo process, that high-redshift magnetic fields are likely to be dominated by their small scale components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا